Строительство и ремонт своими руками

Биогазовая установка собственными силами. Биогаз своими руками в домашних условиях Отопление частного дома биогазом

На подворье любого хозяйства можно использовать не только энергию ветра, солнца, но и биогаза.

Биогаз - газообразное топливо, продукт анаэробного микробиологического разложения органических веществ. Биогазовые технологии - это наиболее радикальный, экологически чистый, безотходный способ переработки, утилизации и обеззараживания разнообразных органических отходов растительного и животного происхождения.

Условия получения и энергетическая ценность биогаза.

Тем, кто захочет построить на подворье малогабаритную биогазовую установку, необходимо детально знать из какого сырья и по какой технологии можно получить биогаз.

Биогаз получают в процессе анаэробной (без доступа воздуха) ферментации (разложения) органических веществ (биомассы) различного происхождения: птичий помет, ботва, листья, солома, стебли растений и другие органические отходы индивидуального хозяйства. Таким образом, биогаз можно производить из всех хозяйственно-бытовых отходов, которые имеют способность бродить и разлагаться в жидком или влажном состоянии без доступа кислорода. Анаэробные установки (ферментаторы) дают возможность перерабатывать любую органическую массу при протекании процесса в две фазы: разложение органической массы (гидратация) и ее газификация.

Применение органической массы, прошедшей микробиологическое разложение в биогазовых установках, повышает плодородие почв, урожайность различных культур на 10-50 %.

Биогаз, который выделяется в процессе сложного брожения органических отходов, состоит из смеси газов: метана («болотного» газа) - 55-75 %, углекислого газа - 23-33 %, сероводорода - 7 %. Метановое брожение - бактериальный процесс. Главное условие его протекания и производства биогаза - наличие тепла в биомассе без доступа воздуха, что можно создать в простых биогазовых установках. Установки несложно соорудить в индивидуальных хозяйствах в виде специальных ферментаторов для сбраживания биомассы.

В приусадебном хозяйстве основным органическим сырьем для загрузки в ферментатор является навоз .

На первом этапе загрузки в емкость ферментатора навоза крупного рогатого скота продолжительность процесса ферментации должна быть 20 сут, свиного навоза - 30 сут. Большее количество газа получают при загрузке различных органических компонентов по сравнению с загрузкой лишь одного компонента. Например, при переработке навоза крупного рогатого скота и птичьего помета в биогазе может содержаться до 70 % метана, что значительно повышает эффективность биогаза как топлива. После того, как процесс сбраживания стабилизируется, следует загружать сырье в ферментатор ежедневно, но не более 10 % количества перерабатываемой в нем массы. Рекомендуемая влажность сырья летом 92-95 %, зимой - 88-90 %.

В ферментаторе, наряду с производством газа, осуществляется обеззараживание органических отходов от патогенной микрофлоры, дезодорация выделяемых неприятных запахов. Получаемый ил коричневого цвета периодически выгружается из ферментатора и используется как удобрение.

Для подогрева перерабатываемой массы используют тепло, которое выделяется при ее разложении в биоферментаторе. При понижении температуры в ферментаторе снижается интенсивность газовыделения, так как микробиологические процессы в органической массе замедляются. Поэтому надежная теплоизоляция биогазовой установки (биоферментатора) одно из наиболее важных условий ее нормальной работы.

Для обеспечения необходимого режима ферментации рекомендуется смешивать закладываемый в ферментатор навоз с горячей водой (желательно 35-40 °С). Потери тепла необходимо сводить к минимуму также при периодической догрузке и очистке ферментатора. Для лучшего обогрева ферментатора можно использовать «тепличный эффект ». Для этого над куполом устанавливают деревянный или легкий металлический каркас и покрывают полиэтиленовой пленкой. Наилучшие результаты достигаются при температуре сырья, которое сбраживается, 30-32 °С и влажности 90-95 %. На юге Украины биогазовые установки могут работать эффективно без дополнительного подогрева органической массы в ферментаторе. В районах средней и северной полосы часть получаемого газа необходимо расходовать в холодные периоды года на дополнительный подогрев сбраживаемой массы, что усложняет конструкцию биогазовых установок. Возможна ситуация, когда после первого наполнения ферментатора и начала отбора газа последний не горит. Это объясняется тем, что первоначально полученный газ содержит более 60 % углекислого газа. В этом случае его необходимо выпустить в атмосферу и через 1-3 дня работа биогазовой установки будет происходить в стабильном режиме.

При ферментации экскрементов от одного животного можно получить за сутки: крупного рогатого скота (живая масса 500-600 кг) - 1,5 куб.м биогаза, свиньи (живая масса 80-100 кг) - 0,2 куб.м, курицы или кроля - 0,015 куб.м.

За одни сутки ферментации из навоза крупного рогатого скота образуется 36 % биогаза, а свиного - 57 %. По количеству энергии 1 куб.м биогаза эквивалентен 1,5 кг каменного угля, 0,6 кг керосина, 2 кВт/ч электроэнергии, 3,5 кг дров, 12 кг навозных брикетов.

Широкое развитие биогазовые технологии получили в Китае, они активно внедряются в ряде стран Европы, Америки, Азии, Африки. В Западной Европе, например в Румынии, Италии, более 10 лет назад начали массово применять малогабаритные биогазовые установки с объемом перерабатываемого сырья 6-12 куб.м.

Владельцы приусадебных и фермерских хозяйств в Украине тоже начали проявлять интерес к таким установкам. На территории любой усадьбы можно оборудовать одну из наиболее простых биогазовых установок, которые, например, применяются в индивидуальных хозяйствах Румынии. Согласно приведенным на рис. 1-а, размерам оборудуют яму 1 и купол 3. Яму облицовывают железобетонными плитами толщиной 10 см, которые штукатурят цементным раствором и для герметичности покрывают смолой. Из кровельного железа сваривают колокол высотой 3 м, в верхней части которого будет скапливаться биогаз. Для защиты от коррозии колокол периодически красят двумя слоями масляной краски. Еще лучше предварительно покрыть колокол изнутри свинцовым суриком.

В верхней части колокола устанавливают патрубок 4 для отвода биогаза и манометр 5 для измерения его давления. Газоотводящий патрубок 6 можно изготовить из резинового шланга, пластмассовой или металлической трубы.

Вокруг ямы-ферментатора устраивают бетонную канавку-гидрозатвор 2, наполненную водой, в которую погружают нижний бортик колокола на 0,5 м.

Подавать газ к кухонной плите можно по металлическим, пластмассовым или резиновым трубкам. Чтобы зимой из-за замерзания конденсирующейся воды трубки не разрывало, применяют несложное устройство (рис. 1-б): U-образную трубку 2 присоединяют к трубопроводу 1 в самой нижней точке. Высота ее свободной части должна быть больше давления биогаза (в мм. вод. ст.). Конденсат 3 сливается через свободный конец трубки, при этом не будет утечки газа.

Во втором варианте установки (рис. 1-в) яму 1 диаметром 4 мм глубиной 2 м обкладывают внутри кровельным железом, листы которого плотно сваривают. Внутреннюю поверхность сварного резервуара покрывают смолой для антикоррозионной защиты. С наружной стороны верхней кромки резервуара из бетона устраивают кольцевую канавку 5 глубиной до 1 м, которую заливают водой. В нее свободно устанавливают вертикальную часть купола 2, закрывающую резервуар. Таким образом канавка с залитой в нее водой служит гидрозатвором. Биогаз собирается в верхней части купола, откуда через выпускной патрубок 3 и далее по трубопроводу 4 (или шлангу) подается к месту использования.

В круглый резервуар 1 загружается около 12 куб.м органической массы (желательно свежего навоза), которая заливается жидкой фракцией навоза (мочой) без добавления воды. Через неделю после заполнения ферментатор начинает работать. В данной установке емкость ферментатора составляет 12 куб.м, что дает возможность сооружать ее для 2-3 семей, дома которых расположены недалеко. Такую установку можно построить на подворье, если семья выращивает на подряде бычков или содержит несколько коров.

Конструктивно-технологические схемы простейших малогабаритных установок приведены на рис. 1-г, д, е, ж. Стрелками обозначены технологические перемещения исходной органической массы, газа, ила. Конструктивно купол может быть жестким или изготовленным из полиэтиленовой пленки. Жесткий купол можно выполнить с длинной цилиндрической частью для глубокого погружения в перерабатываемую массу «плавающим» (рис. 1-г) или вставленным в гидравлический затвор (рис. 1-д). Купол из пленки можно вставить в гидрозатвор (рис. 1-е) или изготовить в виде цельно клееного большого мешка (рис. 1-ж). В последнем исполнении на мешок из пленки укладывают груз 9, чтобы мешок не очень раздувался, а также для образования под пленкой достаточного давления.

Газ, который собирается под куполом или пленкой, поступает по газопроводу к месту использования. Для избежания взрыва газа на выпускном патрубке можно установить отрегулированный на определенное давление клапан. Однако, опасность взрыва газа маловероятна, поскольку при значительном повышении давления газа под куполом последний будет приподнятый в гидравлическом затворе на критическую высоту и опрокинется, выпустив при этом газ.

Выработка биогаза может быть снижена из-за того, что на поверхности органического сырья в ферментаторе при ее брожении образуется корка. Для того, чтобы она не препятствовала выходу газа, ее разбивают, перемешивая массу в ферментаторе. Перемешивать можно не вручную, а путем присоединения снизу к куполу металлической вилки. Купол поднимается в гидравлическом затворе на определенную высоту при накоплении газа и опускается по мере его использования.

Благодаря систематическому движению купола сверху-вниз, соединенные с куполом вилки будут разрушать корку.

Высокая влажность и наличие сероводорода (до 0,5 %) способствует повышенной коррозии металлических частей биогазовых установок . Поэтому состояние всех металлических элементов ферментатора регулярно контролируют и места повреждений тщательно защищают, лучше всего свинцовым суриком в один или два слоя, а затем красят в два слоя любой масляной краской.

Рис. 1. Схемы простейших биогазовых установок :

а). с пирамидальным куполом: 1 - яма для навоза; 2 - канавка-гидрозатвор; 3 - колокол для сбора газа; 4, 5 - патрубок для отвода газа; 6 - манометр;

б). устройство для отвода конденсата: 1 - трубопровод для отвода газа; 2 - U-образная труба для конденсата; 3 - конденсат;

в). с коническим куполом: 1 - яма для навоза; 2 - купол (колокол); 3 - расширенная часть патрубка; 4 - труба для отвода газа; 5 - канавка-гидрозатвор;

г, д, е, ж - схемы вариантов простейших установок: 1 - подача органических отходов; 2 - емкость для органических отходов; 3 - место сбора газа под куполом; 4 - патрубок для отвода газа; 5 - отвод ила; 6 - манометр; 7 - купол из полиэтиленовой пленки; 8 - водяной затвор; 9 - груз; 10 - цельноклееный полиэтиленовый мешок.

Биогазовая установка с подогревом сбраживаемой массы теплом, выделяемым при разложении навоза в аэробном ферментаторе, приведена на рис. 2, включает метантанк - цилиндрическую металлическую емкость с заливной горловиной 3, сливным краном 9, механической мешалкой 5 и патрубком 6 отбора биогаза.

Ферментатор 1 можно сделать прямоугольным из деревянных материалов. Для выгрузки обработанного навоза боковые стенки выполнены съемными. Пол ферментатора - решетчатый, через технологический канал 10 воздух продувают из воздуходувки 11. Сверху ферментатор закрывают деревянными щитами 2. Чтобы уменьшить потери тепла, стенки и днище изготавливают с теплоизоляционной прослойкой 7.

Работает установка так. В метантанк 4 через Головину 3 заливают предварительно подготовленный жидкий навоз влажностью 88-92 %, уровень жидкости определяют по нижней части заливной горловины. Аэробный ферментатор 1 через верхнюю открывающуюся часть заполняют подстилочным навозом или смесью навоза с рыхлым сухим органическим наполнителем (солома, опилки) влажностью 65-69 %. При подаче воздуха через технологический канал в ферментаторе начинает разлагаться органическая масса и выделяется тепло. Его достаточно для подогрева содержимого метантанка. В результате происходит выделение биогаза. Он накапливается в верхней части метантанка. Через патрубок 6 его используют для бытовых нужд. В процессе сбраживания навоз в метантенке перемешивается мешалкой 5.

Такая установка окупится уже за год только за счет утилизации отходов в личном хозяйстве.

Рис. 2. Схема биогазовой установки с подогревом :
1 - ферментатор; 2 - деревянный щит; 3 - заливная горловина; 4 - метантанк; 5 - мешалка; 6 - патрубок для отбора биогаза; 7 - теплоизоляционная прослойка; 8 - решетка; 9 - сливной кран для переработанной массы; 10 - канал для подачи воздуха; 11 - воздуходувка.

Индивидуальная биогазовая установка (ИБГУ-1) для крестьянской семьи, имеющей от 2 до 6 коров или 20-60 свиней, или 100-300 голов птицы (рис. 3). Установка ежесуточно может перерабатывать от 100 до 300 кг навоза и производит 100-300 кг экологически чистых органических удобрений и 3-12 куб.м биогаза.

Для приготовления пищи на семью из 3-4 человек необходимо сжигать 3-4 куб.м биогаза в сутки, для отопления дома площадью 50-60 кв.м - 10-11 куб.м. Установка может работать в любой климатической зоне. К их серийному производству приступил тульский завод «Стройтехника» и ремонтно-механический завод «Орловский» (г. Орел).

Рис. 3. Схема индивидуальной биогазовой установки ИБГУ-1:
1 - заливная горловина; 2 - мешалка; 3 - патрубок для отбора газа; 4 - теплоизоляционная прослойка; 5 - патрубок с краном для выгрузки переработанной массы; 6 - термометр.

Рост цен на энергоносители заставляет задуматься о возможности обеспечить себя ими самостоятельно. Один из вариантов — биогазовая установка. С ее помощью из навоза, помета и растительных остатков получают биогаз, который после очистки можно использовать для газовых приборов (плиты, котла), закачивать в баллоны и использовать его как топливо для автомобилей или электрогенераторов. В общем — переработка навоза в биогаз может обеспечить все потребности дома или фермы в энергоносителях.

Постройка биогазовой установки — способ самостоятельного обеспечения энергоресурсами

Общие принципы

Биогаз — продукт, который получается при разложении органических веществ. В процессе гниения/брожения выделяются газы, собрав которые, можно обеспечить нужды собственного хозяйства. Оборудование, в котором происходит данный процесс называю «биогазовая установка».

Процесс образования биогаза происходит за счет жизнедеятельности разного рода бактерий, которые содержатся в самих отходах. Но для того чтобы они активно «работали» необходимо им создать определенные условия: влажность и температуру. Для их создания строятся биогазовая установка. Это комплекс устройств, основа которого — биореактор, в котором и происходит разложение отходов, который сопровождается газообразованием.

Различают три режима переработки навоза в биогаз:

  • Психофильный режим. Температура в биогазовой установке от +5°C до +20°C. При таких условиях процесс разложения идет медленно,газа образуется намного, его качество низкое.
  • Мезофильный. На этот режим установка выходит при температуре от +30°C до +40°C. В этом случае активно размножаются мезофильные бактерии. Газа при этом образуется больше, процесс переработки занимает меньше времени — от 10 до 20 дней.
  • Термофильный. Эти бактерии размножаются при температуре от +50°C. Процесс идет быстрее всего (3-5 дней), выход газа — самый большой (при идеальных условиях с 1 кг завоза можно получить до 4,5 литров газа). Большинство справочных таблиц по выходу газа от переработки даны именно для этого режима, так что при использовании других режимов стоит делать корректировку в меньшую сторону.

Сложнее всего в биогазовых установках реализуется термофильный режим. Тут требуется качественная теплоизоляция биогазовой установки, подогрев и система контроля за температурой. Зато на выходе получаем максимальное количество биогаза. Еще одна особенность термофильной переработки — невозможность дозагрузки. Остальные два режима — психофильный и мезофильный — позволяют ежедневно добавлять свежую порцию подготовленного сырья. Но, при термофильном режиме, малый срок переработки позволяет разделить биореактор на зоны, в которых будет перерабатываться своя доля сырья с разными сроками загрузки.

Схема биогазовой установки

Основа биогазовой установки — биореактор или бункер. В нем происходит процесс брожения, в нем же скапливается полученный газ. Также есть бункер загрузки и выгрузки, выработанный газ выводится через вставленную в верхнюю часть трубу. Далее идет система доработки газа — ее очистка и повышение давления в газопроводе до рабочего.

Для мезофильных и термофильных режимов необходима также система подогрева биореактора — для выхода на требуемые режимы. Для этого обычно используются газовые котлы, работающие на произведенном топливе. От него система трубопроводов идет в биореактор. Обычно это полимерные трубы, так как они лучше всего переносят нахождение в агрессивной среде.

Еще биогазовая установка нуждается в системе для перемешивания субстанции. При брожении вверху образуется твердая корка, тяжелые частицы оседают вниз. Все это вместе ухудшает процесс газообразования. Для поддержания однородного состояния перерабатываемой массы и необходимы мешалки. Они могут быть механическими и даже ручными. Могут запускаться по таймеру или вручную. Все зависит от того, как сделана биогазовая установка. Автоматизированная система более дорога при монтаже, но требует минимума внимания при эксплуатации.

Биогазовая установка по типу расположения может быть:

  • Надземной.
  • Полузаглубленной.
  • Заглубленной.

Более затратны в установке заглубленные — требуется большой объем земельных работ. Но при эксплуатации в наших условиях они лучше — проще организовать утепление, меньше расходы на подогрев.

Что можно перерабатывать

Биогазовая установка по сути всеядна — перерабатываться может любая органика. Подходит любой навоз и моча, растительные остатки. Негативно влияют на процесс моющие вещества, антибиотики, химия. Их поступление желательно минимизировать, так как они убивают флору, которая занимается переработкой.

Идеальным считается навоз КРС, так как в нем содержатся микроорганизмы в большом количестве. Если в хозяйстве нет коров, при загрузке биореактора желательно добавить некоторую часть помета, для заселения субстрата требуемой микрофлорой. Растительные остатки предварительно измельчаются, разводятся с водой. В биореакторе смешиваются растительное сырье и экскременты. Такая «заправка» перерабатывается дольше, но на выходе при правильном режиме, имеем наибольший выход продукта.

Определение местоположения

Чтобы минимизировать затраты на организацию процесса, имеет смысл расположить биогазовую установку неподалеку от источника отходов — возле построек, где содержится птица или животные. Разработать конструкцию желательно так, чтобы загрузка происходила самотеком. Из коровника или свинарника можно проложить под уклоном трубопровод, по которому навоз будет самотеком поступать в бункер. Это существенно облегчает задачу по обслуживанию реактора, да и уборку навоза тоже.

Наиболее целесообразно расположить биогазовую установку так, чтобы отходы с фермы могли поступать самотеком

Обычно строения с животными находятся на некотором отдалении от жилого дома. Потому выработанный газ нужно будет передавать к потребителям. Но протянуть одну газовую трубу дешевле и проще, чем организовывать линию по транспортировке и загрузке навоза.

Биореактор

К емкости для переработки навоза предъявляются довольно жесткие требования:


Все эти требования по строительству биогазовой установки должны выполняться, так как они обеспечивают безопасность и создают нормальные условия для переработки навоза в биогаз.

Из каких материалов можно сделать

Стойкость к агрессивных средам — это основное требование к материалам, из которых можно сделать емкость. Субстрат в биореакторе может иметь кислую или щелочную реакцию. Соответственно материал, из которого изготавливают емкость, должен хорошо переносить различные среды.

Этим запросам отвечают не так много материалов. Первое что приходит на ум — металл. Он прочен, из него можно сделать емкость любой формы. Что хорошо, что использовать можно готовую емкость — какую-то старую цистерну. В этом случае строительство биогазовой установки займет совсем немного времени. Недостаток металла — он вступает в реакцию с химически активными веществами и начинает разрушаться. Для нейтрализации данного минуса металл покрывается защитным покрытием.

Отличный вариант — емкость биореактора из полимера. Пластик химически нейтрален, не гниет, не ржавеет. Только надо выбирать из таких материалов, которые выносят заморозку и нагрев до достаточно высоких температур. Стенки реактора должны быть толстыми, желательно армированными стекловолокном. Такие емкости недешевы, зато они служат долго.

Более дешевый вариант — биогазовая установка с емкостью из кирпича, бетонных блоков, камня. Для того чтобы кладка выдерживала высокие нагрузки, необходимо армирование кладки (в каждом 3-5 ряду в зависимости от толщины стены и материала). После завершения процесса возведения стен для обеспечения водо- и газо- непроницаемости необходима последующая многослойная обработка стен как изнутри, так и снаружи. Стены штукатурят цементно-песчаным составом с добавками (присадками), обеспечивающими требуемые свойства.

Определение размеров реактора

Объем реактора зависит от выбранной температуры переработки навоза в биогаз. Чаще всего выбирается мезофильная — ее легче поддерживать и она предполагает возможность ежедневной дозагрузки реактора. Выработка биогаза после выхода на нормальный режим (порядка 2 дней) идет стабильно, без всплесков и провалов (при создании нормальных условий). В этом случае имеет смысл рассчитать объем биогазовой установки в зависимости от количества навоза, образующегося в хозяйстве за сутки. Все легко подсчитывается, исходя из среднестатистических данных.

Разложение навоза при мезофильных температурах идет от 10 до 20 дней. Соответственно, объем рассчитывается умножением на 10 или 20. При расчете необходимо учитывать количество воды, которое необходимо для приведения субстрата к идеальному состоянию — его влажность должна быть 85-90%. Найденный объем увеличивают на 50%, так как максимальная загрузка не должна превышать 2/3 по объему резервуара — под потолком должен скапливаться газ.

Например, в хозяйстве 5 коров, 10 свиней и 40 кур. За сути образуется 5 * 55 кг + 10 * 4,5 кг + 40 * 0,17 кг = 275 кг + 45 кг + 6,8 кг = 326,8 кг. Чтобы привести куриный помет к влажности 85% необходимо добавить чуть больше 5 литров воды (это еще 5 кг). Итого общая масса получается 331,8 кг. Для переработки за 20 дней необходимо: 331,8 кг * 20 = 6636 кг — около 7 кубов только под субстрат. Найденную цифру умножаем на 1,5 (увеличиваем на 50%), получаем 10,5 куб. Это и будет расчетная величина объема реактора биогазовой установки.

Люки загрузки и разгрузки ведут непосредственно в емкость биореактора. Для того чтобы субстрат равномерно распределялся по всей площади, делают их в противоположных концах емкости.

При заглубленном способе установки биогазовой установки, загрузочные и разгрузочные трубы подходят к корпусу под острым углом. Причем нижний конец трубы должен находится ниже уровня жидкости в реакторе. Таким образом исключается попадание воздуха в емкость. Также на трубах ставят поворотные или отсечные задвижки, которые в нормальном положении закрыты. Открываются они только на время загрузки или выгрузки.

Так как в навозе могут содержаться крупные фрагменты (элементы подстилки, стебли травы и т.д.), трубы малого диаметра будут часто забиваться. Потому для загрузки-выгрузки они должны быть диаметром 20-30 см. Монтировать их необходимо до начала работ по утеплению биогазовой установки, но после того, как емкость установлена на место.

Наиболее удобный режим работы биогазовой установки — с регулярной загрузкой и выгрузкой субстрата. Данная операция может проводится раз в сутки или раз в двое суток. Навоз и другие компоненты предварительно собираются в накопительной емкости, где доводятся до требуемого состояний — измельчаются, при необходимости увлажняются и перемешиваются. Для удобства в данной емкости может быть механическая мешалка. Подготовленный субстрат выливается в приемный люк. Если расположить приемную емкость на солнце, субстрат будет предварительно нагреваться, что уменьшит затраты на поддержание требуемой температуры.

Глубину установки приемного бункера желательно рассчитать так, чтобы отходы стекали в него самотеком. То же касается выгрузки в биореактор. Лучший случай, если подготовленный субстрат будет двигаться самотеком. А отгораживать его на время подготовки будет заслонка.

Для обеспечения герметичности биогазовой установки, люки на приемном бункере и в зоне выгрузки должны иметь герметизирующий резиновый уплотнитель. Чем меньше будет в емкости воздуха, тем чище будет газ на выходе.

Сбор и отвод биогаза

Отведение биогаза из реактора происходит через трубу, один конец которой находится под крышей, второй обычно опущен в гидрозатвор. Это емкость с водой, в которую выводится полученный биогаз. В гидрозатворе есть вторая труба — она находится выше уровня жидкости. В нее выходит уже более чистый биогаз. На выходе их биореактора устанавливается отсечной газовый кран. Лучший вариант — шаровый.

Какие материалы можно использовать для системы передачи газа? Гальванизированные металлические трубы и газовые трубы из ПНД или ППР. Они должны обеспечивать герметичность, швы и стыки проверяются при помощи мыльной пены. Весь трубопровод собирается из труб и арматуры одного диаметра. Без сужений и расширений.

Очищение от примесей

Примерный состав получаемого биогаза такой:

  • метан — до 60%;
  • углекислый газ — 35%;
  • другие газообразные вещества (в том числе и сероводород, придающий газу неприятный запах) — 5%.

Для того чтобы биогаз не имел запаха и хорошо горел, необходимо удалить из него углекислый газ, сероводород, пары воды. Удаление углекислого газа происходит в гидрозатворе, если на дно установки добавить гашеную известь. Такую закладку придется периодически менять (как станет газ гореть хуже — пора менять).

Осушение газа можно сделать двумя способами — сделав в газопроводе гидрозатворы — вставив в трубу изогнутые участки под гидрозатворы, в которых будет скапливаться конденсат. Недостаток такого способа — необходимость регулярного опорожнения гидрозатвора — при большом количестве собранной воды она может заблокировать проход газа.

Второй способ — поставить фильтр с силикагелем. Принцип тот же, что и в гидрозатворе — газ подается в силикагель, отводится осушенный из-под крышки. При таком способе осушения биогаза, силикагель приходится периодически осушать. Для этого его требуется прогреть некоторое время в микроволновке. Он нагревается, влага испаряется. Можно засыпать и снова использовать.

Для удаления сероводорода используется фильтр с загрузкой из металлической стружки. Можно в емкость загрузить старые металлические мочалки. Очищение происходит точно также: газ подается в нижнюю часть заполненной металлом емкости. Проходя, он очищается от сероводорода, собирается в верхней свободной части фильтра, откуда выводится по через другую трубу/шланг.

Газгольдер и компрессор

Прошедший очистку биогаз поступает в емкость для хранения — газгольдер. Это может быть герметичный полиэтиленовый мешок, пластиковая емкость. Основное условие — газонепроницаемость, форма и материал не имеют значения. В газгольдере хранится запас биогаза. Из него, при помощи компрессора, газ под определенным давлением (задается компрессором) поступает уже к потребителю — на газовую плиту или котел. Этот газ также может использоваться для выработки электроэнергии при помощи генератора.

Для создания стабильного давления в системе после компрессора желательно установить ресивер — небольшое устройство для нивелирования скачков давления.

Устройства для перемешивания

Чтобы биогазовая установка работала в нормальном режиме, необходимо регулярное перемешивание жидкости в биореакторе. Этот несложный процесс решает множество задач:

  • перемешивает свежую порцию загрузки с колонией бактерий;
  • способствует высвобождению выработанного газа;
  • выравнивает температуру жидкости, исключая более прогретые и более холодные участки;
  • поддерживает однородность субстрата, предотвращая оседание или всплытие некоторых составляющих.

Обычно небольшая самодельная биогазовая установка имеет механические мешалки, которые приводятся в движение при помощи мускульной силы. В системах с большим объемом приводить в движение мешалки могут моторы, которые включаются таймером.

Второй способ — перемешивать жидкость, пропуская через нее част выработанного газа. Для этого после выхода из метатенка ставится тройник и часть газа полается в нижнюю часть реактора, где через трубку с дырками выходит. Эту часть газа нельзя считать расходом, так как он все равно снова попадает в систему и, в результате, оказывается в газгольдере.

Третий способ перемешивания — при помощи фекальных насосов перекачивать субстрат их нижней части, выливать его вверху. Недостаток этого способа — зависимость от наличия электроэнергии.

Система подогрева и теплоизоляция

Без подогрева перерабатываемой жижи размножаться будут психофильные бактерии. Процесс переработки в этом случае займет от 30 дней, а выход газа будет небольшим. Летом, при наличии теплоизоляции и предварительном подогреве загрузки возможен выход на температуры до 40 градусов, когда начинается развитие мезофильных бактерий, но зимой такая установка практически неработоспособна — процессы протекают очень вяло. При температуре ниже +5°C они практически замирают.

Чем греть и где расположить

Для получения лучших результатов используют подогрев. Наиболее рациональный — водяной подогрев от котла. Работать котел может на электричестве, твердом или жидком топливе, также можно запустить его на вырабатываемом биогазе. Максимальная температура, до которой требуется греть воду — +60°C. Более горячие трубы могут вызвать налипание на поверхность частиц, что приведет к снижению эффективности обогрева.

Можно использовать и прямой подогрев — вставить ТЭНы, но во-первых, сложно организовать перемешивание, во-вторых, на поверхности будет налипать субстрат, снижая теплоотдачу, ТЭНы будут быстро перегорать

Обогреваться биогазовая установка может с использованием стандартных радиаторов отопления, просто трубами, закрученными в змеевик, сварными регистрами. Трубы использовать лучше полимерные — металлопластиковые или полипропиленовые. Подходят также трубы из гофрированной нержавейки, их проще укладывать, особенно в цилиндрических вертикальных биореакторах, но гофрированная поверхность провоцирует налипание осадка, что не очень хорошо для теплоотдачи.

Чтобы снизить возможность осаждения частиц на греющих элементах, их располагают в зоне мешалки. Только при этом надо все спроектировать так, чтобы мешалка не могла задеть трубы. Часто кажется, что лучше нагреватели расположить снизу, но практика показала, что из-за осадка на дне такой обогрев неэффективен. Так что более рационально располагать нагреватели на стенках метатэнка биогазовой установки.

Способы водяного обогрева

По способу расположения труб обогрев может быть наружным или внутренним. При внутреннем расположении обогрев эффективен, но ремонт и обслуживание нагревателей невозможны без останова и откачки системы. Потому подбору материалов и качеству выполнения соединений уделяют особое внимание.

Обогрев повышает производительность биогазовой установки и сокращает сроки переработки сырья

При наружном расположении обогревателей, требуется больше тепла (затраты на подогрев содержимого биогазовой установки намного выше), так как много тепла уходит на обогрев стенок. Зато система всегда доступна для ремонта, а прогрев более равномерный, так как греется среда от стенок. Еще один плюс такого решения — мешалки не могут повредить систему обогрева.

Чем утеплять

На дно котлована насыпается сначала выравнивающий слой песка, затем теплоизоляционный слой. Это может быть глина, перемешанная с соломой и керамзитом, шлаком. Все эти компоненты можно смешать, можно насыпать отдельными слоями. Их выравнивают в горизонт, устанавливают емкость биогазовой установки.

Бока биореактора можно утеплять современными материалами или классическими дедовскими методами. Из дедовских методов — обмазка глиной с соломой. Наносится в несколько слоев.

Из современных материалов можно использовать экструдированный пенополистирол высокой плотности, газобетонные блоки малой плотности, . Наиболее технологичен в данном случае пенополиуретан (ППУ), но услуги по его нанесению недешевы. Зато получается бесшовная теплоизоляция, которая минимизирует затраты на обогрев. Есть еще один теплоизоляционный материал — вспененное стекло. В плитах он очень дорог, но его бой или крошка стоит совсем немного, а по характеристикам он почти идеален: не впитывает влагу, не боится замерзания, хорошо переносит статические нагрузки, имеет низкую теплопроводность.

У нас в Сербии, да и в Европе в целом, люди не хотят зависить от энергетических и газовых компаний, поэтому стремятся приобрести альтернативные источники энергии. Будь то солнечные батареи, тепловые коллекторы, или биогазовые установки.

Я как-то уже рассказывал в своем журнале о биогазовых установках промышленного производства, теперь мой рассказ о самодельной установке, которая может вырабатывать газ для вашего дома или дачи. Принцип действия понятен из рисунка. Я лишь сделаю пояснения и сообщу назначение некоторых элементов.

Для изготовления установки вам потребуется:

*Две пластиковые бочки по 200 литров (в Сербии в таких бочках солят капусту), но могут быть и металлические бочки от дизельного топлива.

* Пять переходников-штуцеров для соединения элементов с шлангом толщиной не менее 13 мм.

* Пластиковый шланг (длина в зависимости от потребностей установки).

* Пластиковое ведро.

* Пластиковая канистра 3 - 5 литров (от автомобильного масла с завинчивающейся крышкой) для аварийного клапана.

* Две пластиковые трубки диаметром 5 см.

Элемент 1 - на рисунке, БИО газогенератор

Он состоит: из герметичного ствола, двух пластиковых труб и выходного штуцера для биогаза.

В генераторе органическая масса распададатся в процессе гниения, освобождая 60% метана и 40% SO2.

Через первую пластиковую трубку с воронкой, мелко нарезанные отходы биомассы засыпаются, смешиваются с водой в соотношении 10% биомассы и 90% дождевой воды (мягкая вода).

Хорошо, если бы ещё добавить естественную смесь свежего навоза от коров, свиней и птицы, чтобы таким образом ввести микроорганизмы от которых зависит производство биогаза. За неимением, можно добавить немного грязи из реки или пруда, чтобы ускорить процесс.

Процесс занимает около 3-х недель, чтобы газ был сформирован. На ранней стадии вы заметите, что газ выделяется, но знайте, что это SO2 - углекислый газ, который не является горючим. Только после того, как пройдет 3 недели, присходит образование метана, - биогаза.

В нижней части контейнера с течением времени появляется остаток, который является отличным натуральным удобрение для овощей в садоводстве.

Идеальная температура составляет от 12 до 36 градусов, защитите бочку от попадания прямых солнечных лучей в тени, а зимой от замерзания. Имейте в виду, что это бочка "живая", то есть она содержит миллиарды микроорганизмов, работающих на процесс разложения биомассы.

В случае, если вы БИО Газогенератор "пережарите" или "заморозите" - исчезнут микроорганизмы, так что весь процесс придется начинать заново.

Элемент 2 на рисунке представляет собой контейнер для сбора биогаза и гидрозатвор

Она состоит из открытй пластиковой бочки, ведра и двух штуцеров (вентил) для потока газа и разновеса (тегови) .

В этом контейнере - бочке на 200 литров, собран газ, как это показано на рисунке. Обеспечивает простое и гибкое решение без потери газа. Кроме того, вода еще выполняет функцию фильтра, очищая метан от примесей.

Обратите внимание на то, что газ поднял емкость с водой, и это указывает на количество собранного газа.

Масса разновеса поможет сделать давление газа достаточным, который далее направляется в аварийный клапан, элемент № 4.

Держите этот контейнер наполненным водой и защищенным от замерзания.

Элемент 3 - горелка

Элемент 4 - Аварийный клапан

Аварийный клапан состоит из пластиковой канистры с водой, с завинчивающейся крышкой и двух переходников.

Пустые канистры из под масла для автомобиля - хорошая импровизация.

Аварийный клапан предназначен для перехвата пламени, чтобы остановить обратный эффект. Аварийный клапан расположен между Элементом 3 - горелкой и контейнером для сбора газа, Элемент 2.

Крайне важно, чтобы вы установили аврийный клапан, чтобы предотвратить возможность зажигания контейнера с газом, что привело бы к аварии или взрыву.

Владельцам частных домов, расположенных в регионах с ограниченным доступом к традиционным видам топлива, следует обязательно обратить свое внимание на современные биогазовые установки. Подобные агрегаты позволяют получать биогаз из разнообразных органических отходов и использовать его для личных нужд, в том числе и обогрева жилых помещений.

Газ можно получать практически из любой биомассы – отходов животноводческой промышленности, пищевого производства, сельского хозяйства, листвы и пр. При этом соорудить подобную установку можно своими руками.

Для получения биогаза подходит как однородное сырье, так и смеси различной биомассы. Биогазовая установка – это объемное герметичное сооружение, оснащенное приспособлениями для подачи сырья, подогрева биомассы, перемешивания компонентов, отвода полученного биогаза в газовый коллектор и, конечно же, защиты конструкции.

В реакторе под воздействием анаэробных бактерий осуществляется быстрое разложение биомассы. В процессе брожения органического сырья выделяется биогаз. Примерно 70% состава такого газа представлено метаном, оставшаяся часть – углекислым газом.

Биогаз характеризуется прекрасными показателями теплотворной способности, у него нет выраженного запаха и цвета. По своим свойствам биогаз практически ни в чем не уступает более традиционному природному газу.

В развитых странах используют дополнительные установки для очистки биогаза от углекислого газа. При желании вы сможете купить такую же установку и получать чистый биометан.

Биогазовые установки на силосе. 1 Силосные ямы. 2 Система загрузки биомассы. 3 Реактор. 4 Реактор дображивания. 5 Субстратер. 6 Система отопления. 7 Силовая установка. 8 Система автоматики и контроля. 9 Система газопроводов

Сравнение биогаза с более традиционными видами топлива

В среднем одна корова или другое животное весом в полтонны способно за сутки произвести количество навоза, достаточное для получения примерно 1,5 м3 биогаза. Суточный навоз одной средней свиньи можно переработать в 0,2 м3 биогаза, а кролика или курицы – в 0,01-0,02 м3 топлива.

Для сравнения: 1 м3 биогаза из навоза дает примерно столько же тепловой энергии, как 3,5 кг дров, 1-2 кг угля, 9-10 кВт/ч электричества.

Простейший рецепт смеси для получения биогаза включает в себя следующие компоненты:

  • коровий навоз – порядка 1500 кг;
  • сгнившая листва либо другие органические отходы – 3500 кг;
  • вода – 65-75% от общей массы предыдущих компонентов. Предварительно воду нужно подогреть примерно до 35 градусов.

Такого количества биомассы будет достаточно для получения биогаза на полгода эксплуатации с умеренным расходом. В среднем биогаз начинает выделяться уже через 1,5-2 недели после загрузки смеси в установку.

Газ можно использовать для обогрева дома и разнообразных хозяйственных и бытовых построек.

Конструкция типичной биогазовой установки

Основными компонентами полноценной биогазовой системы являются:

  • реактор;
  • система подачи перегноя;
  • мешалки;
  • автоматизированн ая система подогрева биомассы;
  • газгольдер;
  • сепаратор;
  • защитная часть.

Бытовая установка будет иметь несколько упрощенную конструкцию, однако, для полноты восприятия вам предлагается ознакомиться с описанием всех перечисленных элементов.

Реактор

Данная часть установки обычно собирается из нержавейки либо бетона. Внешне реактор похож на большую герметичную емкость, сверху которой установлен купол, обычно имеющий шаровидную форму.

В настоящее время наибольшей популярностью пользуются реакторы с разборной конструкции, выполненные с применением инновационных технологий. Такой реактор можно с легкостью собрать своими руками с минимальными временными затратами. В случае необходимости он настолько же легко разбирается и перевозится в другое место.

Сталь удобна тем, что в ней можно без лишних усилий создавать отверстия для подключения других элементов системы. Бетон же превосходит сталь по показателям прочности и долговечности.

Система подачи биомассы

Эта часть установки включает в свой состав бункер для приема отходов, подводящий трубопровод для подачи воды и шнековый насос, предназначенный для отправки перегноя в реактор.

Для загрузки сухого компонента в бункер используется фронтальный погрузчик. В домашних условиях с этой задачей можно справиться без погрузчика, используя различные подручные средства, к примеру, лопаты.

В бункере происходит увлажнение смеси до полужидкого состояния. После достижения нужного уровня увлажнения шнек переводит полужидкую массу в нижний отсек реактора.

Мешалки

Брожение перегноя в реакторе должно происходить равномерно. Это одно из главнейших условий обеспечения интенсивного выделения биогаза из смеси. Именно для достижения максимально равномерного процесса брожения смеси конструкция типичной биогазовой установки включает в свой состав мешалки с электроприводами.

Существуют мешалки погружного и наклонного типа. Погружные механизмы могут опускаться в биомассу на требуемую глубину для обеспечения интенсивного и равномерного перемешивания субстрата. Обычно такие мешалки размещаются на мачте.

Монтаж наклонных мешалок выполняется на боковых поверхностях реактора. За вращение винта в ферментаторе отвечает электродвигатель.

Автоматизированн ая система подогрева

Для успешного получения биогаза температура внутри системы должна поддерживаться на уровне +35-+40 градусов. Для этого в конструкцию включаются автоматизированн ые системы подогрева.

Источником тепла в данном случае выступает водогрейный котел, в отдельных ситуациях применяются электрические отопительные агрегаты.

В этом элементе конструкции собирается биогаз. Чаще всего газгольдер размещают на крыше реактора.

Производство современных газгольдеров обычно выполняется с применением поливинилхлорида – материала, устойчивого к солнечному свету и разнообразным неблагоприятным природным явлениям.

В некоторых ситуациях вместо обычного газгольдера применяют специальные мешки. Также эти приспособления позволяют временно увеличить объем запаса полученного биогаза.

Для изготовления газгольдер-мешко в применяется специальный поливинилхлорид с эластичными свойствами, способный раздуваться по мере увеличения объема биогаза.

Эта часть системы отвечает за сушку отработанного перегноя и получение при необходимости высококачественн ых удобрений.

Простейший сепаратор состоит из шнека и сепараторной камеры. Камера выполнена в форме сита. Это позволяет разделять биомассу на твердый компонент и жидкую часть.

Осушенный перегной отправляется в отгрузочный отсек. Жидкую часть система направляет обратно в приемную камеру. Здесь жидкость применяется для увлажнения нового исходного сырья.

Простейшая биогазовая установка своими руками

Бытовая биогазовая установка будет иметь несколько упрощенную конструкцию, но к ее изготовлению следует подходить с максимальной ответственностью.

Первый шаг. Выройте яму. По своей сути биогазовая установка является большой ямой со специальной отделкой. Самой ответственной и одновременно с этим сложной частью изготовления рассматриваемой системы является правильная подготовка стенок биореактора и его основания.

Яма должна быть герметичной. Укрепите основание и стенки с помощью пластика либо бетона. Вместо этого вы можете приобрести готовые полимерные кольца с глухим дном. Такие приспособления позволяют обеспечить необходимую герметичность системы. Материал будет сохранять свои изначальные характеристики в течение долгих лет, а при необходимости вы сможете с легкостью заменить старое кольцо новым.

Второй шаг. Оборудуйте систему газового дренажа. Это избавит вас от необходимости покупки и установки мешалок, благодаря чему затраты времени и денежных средств на сборку установки существенно сократятся.

Простейший вариант системы газового дренажа – это вертикально закрепленные канализационные трубы из поливинилхлорида со множеством отверстий по корпусу.

Трубы подбирайте такой длины, чтобы их верхние края несколько возвышались над верхним уровнем загруженного перегноя.

Третий шаг . Накройте внешний слой субстрата пленочной изоляцией. Благодаря пленке будут создаваться условия для скапливания биогаза под куполом в условиях незначительного избыточного давления.

Четвертый шаг. Установите купол и смонтируйте газоотводящую трубу в его наивысшей точке.

Потребление газа должно быть регулярным. В противном случае купол над емкостью с биомассой может попросту взорваться. В летнее время газ образуется более интенсивно, чем в зимний период. Для решения последней проблемы купите и установите подходящие обогреватели.

Порядок и условия успешного использования биогазовой установки

Таким образом, самостоятельно собрать простую биогазовую установку несложно. Однако для ее успешной эксплуатации вы должны запомнить и соблюдать несколько простых правил.

Одно из важнейших требований – в загружаемой органической массе не должно присутствовать никаких веществ, способных оказать отрицательное воздействие на жизнедеятельност ь анаэробных микроорганизмов. К числу запрещенных включений относятся разного рода растворители, антибактериальны е препараты и прочие подобные вещества.

Ряд неорганических веществ также способен привести к ухудшению жизнедеятельност и бактерий. Ввиду этого запрещается, к примеру, разбавлять перегной водой, оставшейся после стирки одежды либо мытья машины.

Помните: биогазовая установка является потенциально взрывоопасным агрегатом, поэтому соблюдайте все положения техники безопасности, актуальной для эксплуатации любого газового оборудования.

Таким образом, даже навоз и в принципе практически все, от чего ранее вы старались всеми силами избавляться, может пригодиться в хозяйстве. Нужно лишь правильно соорудить домашнюю биогазовую установку, и уже очень скоро в вашем доме будет тепло. Следуйте полученным рекомендациям, и вам больше не придется тратить колоссальные суммы на отопление.

Удачной работы!

Среди важных составляющих нашей жизни большое значение имеют энергоносители, цены на которые растут чуть ли не каждый месяц. Каждый зимний сезон пробивает брешь в семейных бюджетах, заставляя нести расходы на отопление, а значит, на топливо для печей и отопительных котлов. А как быть, ведь электроэнергия, газ, уголь или дрова стоят денег и чем более удалены наши жилища от крупных энергетических магистралей, тем дороже обойдется отопление… Между тем альтернативное отопление, не зависимое от каких-либо поставщиков и тарифов, можно построить на биогазе, добыча которого не требует ни геологоразведки, ни бурения скважин, ни дорогостоящего насосного оборудования.

Биогаз можно получить в практически домашних условиях, понеся при этом минимальные, быстро окупаемые затраты - большую часть ответов по этому вопросу содержит данная статья.

Отопление биогазом - история

Интерес к горючему газу, образующемуся на болотах в теплый сезон года, возник еще у наших далеких предков - передовые культуры Индии, Китая, Персии и Ассирии экспериментировали с биогазом свыше 3 тысячелетий назад. В те же древние времена в родоплеменной Европе швабы-алеманны заметили, что выделяемый на болотах газ отлично горит - они использовали его в отоплении своих хижин, подводя к ним газ по кожаным трубам и сжигая в очагах. Швабы считали биогаз «дыханием драконов», которые, по их мнению, жили в болотах.

Спустя века и тысячелетия, биогаз пережил второе свое открытие - в 17-18 веках сразу два европейских ученых обратили на него внимание. Известный химик своего времени Ян Баптиста ван Гельмонт установил, что при разложении любой биомассы образуется горючий газ, а прославленный физик и химик Алессандро Вольта установил прямую зависимость между количеством биомассы, в которой идут процессы разложения, и количеством выделяемого биогаза. В 1804 году английский химик Джон Дальтон открыл формулу метана, а четырьмя годами позже англичанин Гемфри Дэви обнаружил его в составе болотного газа.Интерес к практическому применению биогаза возник с развитием газового освещения улиц - в конце 19-го века улицы одного района английского города Эксетера освещались газом, полученным из коллектора со сточными водами.

В 20-м веке потребность в энергоносителях, вызванная Второй мировой войной, вынудила европейцев искать альтернативные источники энергии. Биогазовые установки, в которых газ вырабатывался из навоза, распространились в Германии и Франции, частично в Восточной Европе. Однако после победы стран антигитлеровской коалиции о биогазе забыли - электроэнергия, природный газ и нефтепродукты полностью покрыли потребности производств и населения.

Сегодня отношение к альтернативным источникам энергии резко изменилось - они стали интересны, поскольку стоимость привычных энергоносителей возрастает год от года. По своей сути биогаз - реальный способ уйти от тарифов и расходов на классические энергоносители, получить свой собственный источник топлива, причем на любые цели и в достаточном количестве.

Наибольшее количество биогазовых установок создано и эксплуатируется в Китае: 40 миллионов установок средней и малой мощности, объем производимого метана - около 27 млрд. м3 за год.

Биогаз - что это

Это газовая смесь, состоящая в основном из метана (содержание от 50 до 85%), углекислого газа (содержание от 15 до 50%) и прочих газов в гораздо меньшем процентном содержании. Биогаз производят команда из трех видов бактерий, питающихся биомассой - гидролизные бактерии, производящие пищу для кислотообразующих бактерий, которые в свою очередь снабжают пищей метанобразующие бактерии, формирующие биогаз.

Ферментация исходного органического материала (к примеру, навоза), продуктом которой и будет биогаз, проходит без доступа внешней атмосферы и называется анаэробной. Другой продукт такой ферментации, называемый компостным перегноем, хорошо известен сельским жителям, применяющим его для удобрения полей и огородов, а вот производимые в компостных кучах биогаз и тепловая энергия обычно не используются - и напрасно!

От каких факторов зависит выход биогаза с более высоким содержанием метана

Прежде всего - от температуры. Активность бактерий, ферментирующих органику, тем выше, чем выше температура окружающей их среды, при минусовых температурах ферментация замедляется или прекращается полностью. По этой причине выработка биогаза более всего распространена в странах Африки и Азии, расположенных субтропиках и тропиках. В климате России получение биогаза и полный переход на него, как на альтернативной топливо, потребует теплоизоляцию биореактора и введение теплой воды в массу органики, когда температура внешней атмосферы опускается ниже нулевой отметки.Органический материал, закладываемый в биореактор, должен быть биологически разлагаемым, требуется вводить в него значительное количество воды - до 90% от массы органики. Важным моментом будет нейтральность органической среды, отсутствие в ее составе компонентов, препятствующих развитию бактерий, вроде чистящих и моющих веществ, любых антибиотиков. Биогаз можно получить из практически любых отходов хозяйственного и растительного происхождения, сточных вод, навоза и т.д.

Процесс анаэробной ферментации органики лучше всего проходит, когда значение pH находится в диапазоне 6,8-8,0 - большая кислотность замедлит формирование биогаза, т.к. бактерии будут заняты потреблением кислот и производством углекислого газа, нейтрализующего кислотность.

Соотношение азота и углерода в биореакторе необходимо рассчитать, как 1 к 30 - в этом случае бактерии получат необходимое им количество углекислого газа, а содержание метана в биогаза будет наивысшим.

Лучший выход биогаза с достаточно высоким содержанием метана достигается, если температура в ферментируемой органике находится в диапазоне 32-35 °С, при более низких и более высоких значениях температуры в биогазе увеличивается содержание двуокиси углерода, его качество падает. Бактерии, производящие метан, подразделяются на три группы: психрофильные, эффективны при температурах от +5 до +20 °С; мезофильные, их температурный режим от +30 до +42 °С; термофильные, работающие в режиме от +54 до +56 °С. Для потребителя биогаза наибольший интерес представляют мезофильные и термофильные бактерии, ферментирующие органику при большем выходе газа.

Мезофильная ферментация менее чувствительная к изменениям температурного режима на пару градусов от оптимального диапазона температур, требует меньших затрат энергии на обогрев органического материала в биореакторе. Ее минусы, по сравнению с термофильной ферментацией, в меньшем выходе газа, большим сроком полной переработки органического субстрата (около 25 дней), разложенный в результате органический материал может содержать вредоносную флору, т.к. невысокая температура в биореакторе не обеспечивает 100% стерильности.

Подъем и поддержание внутриреакторной температуры на уровне, приемлемом для термофильных бактерий, обеспечит наибольший выход биогаза, полная ферментация органики пройдет за 12 дней, продукты разложения органического субстрата полностью стерильны. Отрицательные характеристики: смена температурного режима на 2 градуса за пределы приемлемого для термофильных бактерий диапазона понизит выход газа; высокая потребность в обогреве, как следствие - значительные затраты энергоносителей.

Содержимое биореактора необходимо промешивать с периодичностью 2 раза за день, иначе на его поверхности образуется корка, создающая преграду для биогаза. Помимо ее устранения промешивание позволяет выровнять температуру и уровень кислотности внутри органической массы.В биореакторах непрерывного цикла работы наибольший выход биогаза происходит при одновременной выгрузке органики, прошедшей ферментацию и загрузке объема новой органики в количестве, равном выгружаемому объему. В биореакторы небольшого объема из тех, что обычно используют в дачных хозяйствах, каждые сутки требуется извлечь и ввести органики в объеме, примерно равном 5% от внутреннего объема камеры ферментации.

Выход биогаза напрямую зависит от типа органического субстрата, закладываемого в биореактор (ниже приведены средние данные на кг веса сухого субстрата):

  1. навоз конский дает 0,27 м3 биогаза, содержание метана 57% ;
  2. навоз КРС (крупного рогатого скота) дает 0,3 м3 биогаза, содержание метана 65%;
  3. свежий навоз КРС дает 0,05 м3 биогаза с 68% содержанием метана;
  4. куриный помет - 0,5 м3, содержание метана в нем составит 60%;
  5. свиной навоз - 0,57 м3, доля метана составит 70%;
  6. овечий навоз - 0,6 м3 с содержанием метана 70%;
  7. солома пшеницы - 0,27 м3, с 58% содержанием метана;
  8. солома кукурузы - 0,45 м3, содержание метана 58%;
  9. трава - 0,55 м3, с 70% содержанием метана;
  10. древесная листва - 0,27 м3, доля метана 58%;
  11. жир - 1,3 м3, содержание метана 88%.

Биогазовые установки

Эти устройства состоят из следующих основных элементов - реактор, бункер загрузки органики, отвод биогаза, бункер выгрузки ферментированной органики.

По типу конструкции биогазовые установки бывают следующих типов:

  • без обогрева и без промешивания ферментируемой органики в реакторе;
  • без обогрева, но с промешиванием органической массы;
  • с обогревом и промешиванием;
  • с обогревом, с промешиванием и с приборам, позволяющими контролировать и управлять процесс ферментации.

Биогазовая установка первого типа подходит для небольшого хозяйства и рассчитана на психрофильные бактерии: внутренний объем биореактора 1-10 м3 (переработка 50-200 кг навоза за сутки), минимальная комплектация, полученный биогаз не хранится - сразу поступает к потребляющим его бытовым приборам. Такую установку можно использовать только в южных районах, она рассчитана на внутреннюю температуру 5-20 °С.

Удаление ферментированной (сброженной) органики производится одновременно с загрузкой новой партии, отгрузка выполняется в емкость, объем которой должен быть равным или больше внутреннего объема биореактора. Содержимое емкости храниться в ней до введения в удобряемую почву. Конструкция второго типа также рассчитана на небольшое хозяйство, ее производительность несколько выше биогазовых установок первого типа - в ее оснащение входит перемешивающее устройство с ручным или механическим приводом.

Третий тип биогазовых установок оснащен помимо промешивающего устройства принудительным обогревом биореактора, водогрейный котел при этом работает на альтернативном топливе, производимом биогазовой установкой. Выработкой метана в таких установках занимаются мезофильные и термофильные бактерии, в зависимости от интенсивности обогрева и уровня температуры в реакторе.

Последний тип биогазовых установок наиболее сложен и рассчитан на нескольких потребителей биогаза, в конструкцию установок вводятся электроконтактный манометр, предохранительный клапан, водогрейный котел, компрессор (пневматическое промешивание органики), ресивер, газгольдер, газовый редуктор, отвод для загрузки биогаза в транспорт. Эти установки работают непрерывно, допускают установку любого из трех температурных режимов благодаря точно настраиваемому обогреву, отбор биогаза выполняется в автоматическом режиме.

Биогазовая установка своими руками

Теплотворность биогаза, произведенного в биогазовых установках, примерно равна 5 500 ккал/м3, что немногим ниже калорийности природного газа (7 000 ккал/м3). Для отопления 50 м2 жилого дома и использования газовой плиты с четырьмя конфорками в течение часа потребуется в среднем 4 м3 биогаза.

Предлагаемые на рынке России промышленные установки по производству биогаза стоят от 200 000 руб. - при их внешне высокой стоимости стоит отметить, что эти установки точно рассчитаны по объему загружаемого органического субстрата и на них распространяются гарантии производителей.

Если же вы предпочитаете создать биогазовую установку самостоятельно, то дальнейшая информация - для вас!

Форма биореактора

Наилучшая форма для него будет овальной (яйцеобразной), однако соорудить такой реактор крайне сложно. Более легким для конструирования будет биореактор цилиндрической формы, верхняя и нижняя части которого выполнены в виде конуса или полукруга. Реакторы квадратной или прямоугольной формы из кирпича или бетона будут малоэффективны, т.к. по углам в них со временем образуются трещины, вызванные давлением субстрата, в углах будут накапливаться затвердевшие фрагменты органики, мешающие процессу ферментации.Стальные емкости биореакторов герметичны, устойчивы к высокому давлению, их не так сложно построить. Их минус - в слабой устойчивости к ржавчине, требуется нанесение на внутренние стенки защитного покрытия, к примеру, смолы. Снаружи поверхности стального биореактора необходимо тщательно зачистить и окрасить в два слоя.

Емкости биореакторов из бетона, кирпича или камня необходимо самым тщательным образом покрыть изнутри слоем смолы, способным обеспечить их эффективную водо- и газонепроницаемость, выдерживать температуру порядка 60 °С, агрессию сероводорода и органических кислот. Помимо смолы для защиты внутренних поверхностей реактора можно использовать парафин, разбавленный 4% моторного масла (нового) или керосина и разогретый до 120-150 °С - поверхности биореактора перед нанесением на них парафинового слоя необходимо прогреть горелкой.

При создании биореактора можно воспользоваться не подверженными ржавчине емкостями из пластика, но только из жесткого пластика с достаточно прочными стенками. Мягкий пластик можно использовать только в теплый сезон, т.к. с наступлением холодов на нем будет сложно закрепить утеплитель, к тому же стенки его недостаточно прочны. Пластиковые биореакторы можно применять только для психрофильной ферментации органики.

Место размещения биореактора

Его размещение планируют в зависимости от свободного места на данном участке, достаточного удаления от жилых построек, удаленности от места размещения отходов, от мест размещения животных и т.д. Планирование наземного, полностью или частично погруженного в землю биореактора зависит от уровня грунтовых вод, удобства ввода и вывода органического субстрата в емкость реактора. Оптимальным будет размещение корпуса реактора ниже уровня земли - достигается экономия на оборудовании для введения органического субстрата в емкость реактора, существенно повышается теплоизоляция, для обеспечения которой можно применить недорогие материалы (солому, глину).

Оснащение биореактора

Емкость реактора требуется оборудовать люком, с помощью которого можно выполнять ремонтные и профилактические работы. Между корпусом биореактора и крышкой люка необходимо проложить резиновую прокладку или слой герметика. Необязательным, но крайне удобным будет оснащение биореактора датчиком температуры, внутреннего давления и уровня органического субстрата.

Теплоизоляция биореактора

Ее отсутствие не позволит эксплуатировать биогазовую установку круглый год, лишь в теплое его время. Для утепления заглубленного или полузаглубленного биореактора используется глина, солома, сухой навоз и шлак. Укладка утеплителя выполняется слоями - при установке заглубленного реактора котлован перекрывается слоем пвх-пленки, препятствующей прямому контакту теплоизоляционного материала с почвой. До установки биореактора на дно котлована с уложенной пвх-пленкой насыпается солома, поверх нее слой глины, затем выставляется биореактор. После этого все свободные участки между емкостью реактора и проложенным пвх-пленкой котлованом засыпаются соломой практически до торца емкости, поверх, 300 мм слоем засыпается слой глины вперемешку со шлаком.

Загрузка и выгрузка органического субстрата

Диаметр труб загрузки в биореактор и выгрузки из него должен быть не меньше 300 мм, иначе они забьются. Каждую из этих труб в целях сохранениях анаэробных условий внутри реактора следует оснастить винтовыми или полуоборотными задвижками. Объем бункера для подачи органики, в зависимости от типа биогазовой установки, должен быть равным суточному объему вводимого сырья. Бункер подачи следует расположить на солнечной стороне биореактора, т.к. это будет способствовать повышению температуры во вводимом органическом субстрате, ускоряя процессы ферментации. Если же биогазовая установка связана непосредственно с фермой, то бункер следует разместить под ее строением так, чтобы органический субстрат поступал в него под действием сил гравитации.

Трубопроводы загрузки и выгрузки органического субстрата следует расположить по противоположным сторонам биореактора — в этом случае вводимое сырье будет распределено равномерно, а ферментированная органика будет легко извлекаться под воздействием гравитационных сил и массы свежего субстрата. Отверстия и монтаж трубопровода под загрузку и выгрузку органики следует выполнить до монтажа биореактора на место установки и до размещения на нем слоев теплоизоляции. Герметичность внутреннего объема биореактора достигается тем, что вводы труб загрузки и выгрузки субстрата расположены под острым углом, при этом уровень жидкости внутри реактора выше точек ввода труб — гидравлический затвор блокирует доступ воздуха.

Ввод нового и вывод прошедшего ферментацию органического материала проще всего проводить по принципу перелива, т.е. подъем уровня органики внутри реактора при вводе новой порции выведет через трубу выгрузки субстрат в объеме, равном объему вводимого материала.