Строительство и ремонт своими руками

Лазерное излучение опасно для человека. Лазерное излучение и его воздействие на человека. Что такое лазер

Влияние лазерного излучения на организм человека на данный момент изучено не полностью, но многие уверены в его негативном воздействии на всё живое. Лазерное излучение зарождается согласно принципу создания света и предполагает использование атомов, но с другим набором физических процессов. Именно по этой причине при лазерном излучении можно проследить воздействие внешнего электромагнитного поля.

Сфера применения

Лазерное излучение является узконаправленным вынужденным потоком энергии непрерывного или импульсного типа. В первом случае присутствует поток энергии одной мощности, а во втором – уровень мощности периодически достигает определенных пиковых значений. Образованию такой энергии помогает квантовый генератор, представленный лазером. Потоки энергии в этом случае являются электромагнитными волнами, которые относительно друг друга распространяются только параллельно. Благодаря такой особенности происходит создание минимального угла светового рассеивания и определенной точной направленности.

Источники лазерного излучения, основанные на его свойствах, достаточно широко применяются в самых разных областях человеческой жизнедеятельности, включая:

  • науку – исследования и эксперименты, опыты и открытия;
  • военно-оборонную промышленность;
  • космическую навигацию;
  • производственную сферу;
  • техническую сферу;
  • локальную термическую обработку – сварку и пайку, резку и гравировку;
  • бытовое использование в виде лазерных датчиков считывания штрихкода, устройств считывания компакт-дисков, а также указок;
  • лазерное напыление, заметно повышающее износостойкость металлов;
  • создание современных голограмм;
  • совершенствование различных оптических устройств;
  • химическую промышленность – анализ и запуск реакций.

Особенно важным является использование устройств подобного типа в сфере современных медицинских технологий.

Лазер в медицине

С точки зрения современной медицины лазерное излучение является своеобразным и очень своевременным прорывом в области лечения пациентов, которые нуждаются в оперативном вмешательстве. Лазер активно применяется при производстве качественного хирургического инструментария.

К неоспоримым преимуществам хирургического лечения относится использование лазерного высокоточного скальпеля, позволяющего выполнять бескровные разрезы мягких тканей. Такой результат обеспечивается практически мгновенной спайкой капилляров и мелких сосудов. Во время применения лазерного инструмента хирург способен полностью видеть операционное поле. Лазерным потоком энергии ткани рассекаются на определенном расстоянии, при этом отсутствует контакт инструмента с сосудами и внутренними органами.

Важный приоритет применения современного хирургического инструмента представлен обеспечением абсолютной максимальной стерильности. Благодаря строгой направленности лучей все операции происходят с минимальными показателями травматизации, при этом стандартный реабилитационный период прошедших операцию пациентов становится значительно короче и намного быстрее возвращается полноценная трудоспособность.

Отличительная особенность применения во время операции лазерного скальпеля сегодня представлена безболезненностью в послеоперационный период. Очень быстрое развитие современных лазерных технологий способствовало значительному расширению возможностей его применения. Относительно недавно были обнаружены и доказаны с научной точки зрения свойства лазерного излучения оказывать положительное влияние на состояние кожных покровов, благодаря чему устройства подобного типа стали активно применяться в дерматологии и косметологии.

Области медицинского применения

Медицина является на сегодняшний день далеко не единственной, но очень перспективной сферой применения современного лазерного оборудования:

  • процесс эпиляции с разрушениями волосяных луковиц и эффективным удалением волос;
  • лечение выраженной угревой сыпи;
  • эффективное удаление родимых и пигментных пятен;
  • шлифование кожи;
  • терапия бактериального поражения эпидермиса с обеззараживанием и уничтожением патогенной микрофлоры;
  • предупреждение распространения инфекции разного генеза.

Самой первой отраслью, в которой стало активно использоваться лазерное оборудование и его излучение, является офтальмология. Направления микрохирургии глаза, в которых находит широкое применение лазерная технология, представлены:

  • лазерной коагуляцией в виде использования термических свойств при лечении сосудистых глазных заболеваний, сопровождающихся поражением сосудов сетчатки и роговицы;
  • фотодеструкцией в виде рассечения тканей на пиковой мощности лазерного оборудования при лечении и рассечении вторичной катаракты;
  • фотоиспарением в виде длительного теплового воздействия при наличии воспалительных процессов глазного нерва, а также при конъюнктивите;
  • фотоабляцией в виде постепенного удаления тканей при лечении дистрофических изменений глазной роговицы, устранении ее помутнения, при операционном лечении глаукомы;
  • лазерной стимуляцией с противовоспалительным и рассасывающим воздействием, заметно улучшающим глазную трофику, а также при лечении склеритов, экссудации внутри глазной камеры и гемофтальмов.

Лазерное облучение достаточно широко используется в терапии онкологических заболеваний кожи. Наибольшую эффективность показывает современное лазерное оборудование при удалении меланобластомы. Данный метод также может применяться при лечении рака пищевода или опухолях прямой кишки на 1-2 стадиях. Следует отметить, что в условиях слишком глубокого расположения опухоли и множественных метастазах лазер практически совсем не эффективен.

Опасность излучения лазера

На данный момент относительно хорошо изучено негативное воздействие лазерного излучения на живые организмы. Облучение бывает рассеянным, прямым и отраженным. Отрицательное воздействие вызывает способность лазерных устройств излучать световые и тепловые потоки. Степень поражения напрямую зависит сразу от нескольких факторов, включая:

  • длину электромагнитной волны;
  • участок локализации негативного воздействия;
  • поглотительные способности тканей.

Сильнее всего подвержены отрицательному влиянию энергии лазера глаза. Именно сетчатка глаза отличается чрезвычайной чувствительностью и может получать ожоги разной степени выраженности.

Последствиями такого влияния становятся частичная потеря пациентом зрения, а также полная и необратимая слепота. Источники негативного излучения чаще всего бывают представлены разными инфракрасными приборами-излучателями видимого света.

Симптоматика поражения сетчатки, радужки, хрусталика и роговицы лазером:

  • болезненность и спазмы в глазах;
  • выраженная отечность век;
  • кровоизлияния разной степени;
  • помутнение глазного хрусталика.

Облучение средней степени интенсивности может стать причиной термических ожогов кожных покровов. На месте контакта лазерного оборудования и кожных покровов в этом случае заметно резкое повышение температуры, сопровождающееся вскипанием и испарением межтканевой и внутриклеточной жидкости. При этом кожа приобретает характерное красное окрашивание. Под действием давления происходят разрывы тканевых структур и появляется отек, который может дополнятся внутрикожными кровоизлияниями. Впоследствии на местах ожога наблюдаются некротические участки, а в самых тяжелых случаях происходит заметное обугливание кожных покровов.

Признаки негативного воздействия

Отличительным признаком лазерного ожога являются четкие границы на пораженных участках кожи с пузырьками, которые образуются непосредственно в слоях эпидермиса, а не под ним. Рассеянное поражение кожи характеризуется практически мгновенной потерей чувствительности, а эритема проявляется спустя несколько дней, после воздействия облучения.

Основные признаки представлены:

  • перепадами артериального давления;
  • замедленным сердцебиением;
  • повышенной потливостью;
  • необъяснимой общей утомляемостью;
  • чрезмерной раздражительностью.

Особенностью лазерного излучения инфракрасного спектра является проникновение глубоко внутрь, через ткани, с поражением внутренних органов. Характерное отличие глубокого ожога представлено чередованием здоровых и поврежденных тканей. Первоначально при лучевом воздействии люди не испытывают ощутимых болей, а к наиболее уязвимым органам относится печень. В целом, воздействие лазерного излучения на человеческих организм провоцирует функциональные расстройства в центральной нервной системе и сердечно-сосудистой деятельности.

Защита от негативного воздействия и меры предосторожности

Наибольший риск облучения возникает у людей, деятельность которых напрямую связана с использованием квантовых генераторов. Согласно принятым на сегодняшний день основным санитарным нормам, опасны для человека 2, 3 и 4 классы излучения.

Технические защитные методы представлены:

  • грамотной планировкой промышленных помещений;
  • правильной внутренней отделкой без зеркального отражения;
  • соответствующим размещением лазерных установок;
  • ограждением зон возможного облучения;
  • соблюдением требований по обслуживанию и эксплуатации лазерного оборудования.

Индивидуальная защита включает в себя специальные очки и спецодежду, безопасные экраны и кожухи, а также призмы и линзы для отражения лучей. Сотрудники таких предприятий должны регулярно направляться на медицинские профилактические осмотры.

В бытовых условиях необходимо соблюдать осторожность и обязательно придерживаться определенных правил эксплуатации:

  • не направлять источники излучения на светоотражающие поверхности;
  • не направлять лазерный свет в глаза;
  • хранить лазерные гаджеты в недоступном для маленьких детей месте.

Наиболее опасны для человеческого организма лазеры, имеющие прямое излучение, большую интенсивность, узкую и ограниченную направленность луча, а также слишком высокую плотность излучения.

Лекция 8

«Лазер» - аббревиатура, образованная из начальных букв английской фразы Light amplification by stimulated emission of radiation- усиление света за счет создания стимулированного излучения.

Лазер (оптический квантовый генератор) - генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.

Лазерное излучение – это электромагнитное излучение, которое формируется в (лазерах ) с длиной волны 0,2-1000мкм: 0,2…0,4 мкм - ультрафиолетовая, 0,4…0,75 мкм - видимого света, ближнего инфракрасного 0,75…1,4 мкм, инфракрасного 1,4…10 2 мкм.

Отличительная особенность лазерных излучений является: монохромность излучения (строго одной длины волны); когерентность излучения (все источники излучения испускают электромагнитные волны в одной фазе); острая направленность луча (малое расхождение).

Лазерное излучение различают по виду излучения на

- прямое (заключенное в ограниченном телесном угле)

- рассеянное (рассеянное от вещества, находящегося в составе среды, сквозь которую проходит лазерный луч)

- зеркально-отраженное (отраженное от поверхности под углом, равным углу падения излучения)

- диффузно-отраженное (отражается от поверхности по всевозможным направлениям)

Как техническое устройство лазер состоит из трех основных элементов:

- активной среды

- резонатора

- системы накачки.

В зависимости от характера активной среды лазеры подразделяются на следующие типы: твердотельные (на кристаллах или стеклах); газовые (He-Ne, Ar, Kr, Xe, Ne, He-Cd, CO 2 и др.); жидкостные; полупроводниковые и др.

В качестве резонатора обычно используются параллельные зеркала с высоким коэффициентом отражения, между которыми размещается активная среда.

Накачка , т.е. перевод атомов активной среды на верхний уровень, обеспечивается или посредством мощного источника света или электрическим разрядом.

Существуют лазеры непрерывного и импульсного действия.

Классификацию лазеров можно представить в следующем виде (рис):

По степени опасности генерируемого излучения классифицируются лазеры согласноГОСТ 12.1.041-83 (1996):

Класс 1 (безопасные) - выходное излучение не представляет опасности для глаз и кожи;

Класс II (малоопасные ) - выходное излучение опасно при облучении глаз прямым или зеркальныо-отраженным излучением;

Класс III (среднеопасные ) – опасно для глаз прямое, зеркальное, а также диффузно-отраженное излучение;

Класс IV (высокоопасные ) – опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отраженной поверхности.

Классификацию лазеров по степени опасности осуществляют на основе временны́х, энергетических и геометрических (точечный или протяженный источник) характеристик источника излучения и предельно допустимых уровней лазерного излучения.



Технические характеристики лазера : длина волны, мкм; ширина линии излучения; интенсивность излучения (определяется по величине энергии или мощности выходного пучка и выражаемая в Дж или Вт); длительность импульса,с; частота повторения импульсов,Гц.

Лазеры получили широкое применение в научных целях, в практической медицине, а также в различных областях техники. Области применения лазера определяются энергией используемого лазерного излучения:

Биологическое действие лазерного излучения зависит от энергии излучения Е , энергии импульса Е и, плотности мощности (энергии) W p (W e), времени облучения t , длины волны l, длительности импульса t, частоты повторения импульсов f , потока излучения Ф , поверхностной плотности излучения Е э, интенсивности излучения I .

Характеризуемый объект Показатель Обозначение Единица измерения
Пучок лазерного излучения Энергия лазерного излучения Е Дж
Энергия импульса лазерного излучения Е и Дж
Мощность лазерного излучения Р Вт
Плотность энергии (мощности) лазерного излучения W e , W p Дж/см 2 (Вт/см 2)
Поле излучения Поток излучения Ф, F, Р Вт
Поверхностная плотность потока излучения Е э Вт/м 2
Интенсивность излучения I, S Вт/м 2
Источник излучения Излучательная способность R э Вт/м 2
Энергетическая сила излучения I э Вт/ср
Энергетическая яркость L e Вт/м 2 ·ср
Приемник излучения Облученность (энергетическая освещенность) E e Вт/м 2
Энергетическое количество освещения H e Дж/м 2

Под воздействием лазерного излучения нарушается жизнедеятельность, как отдельных органов, так и организма в целом. В настоящее время установлено специфическое действие лазерных излучений на биологические объекты, отличающееся от действия других опасных производственных физических и химических факторов. При воздействии лазерного излучения на сплошную биологическую структуру (например, на организм человека) различают три стадии: физическую, физико-химическую и химическую.

На первой стадии (физической) происходят взаимодействия излучения с веществом, характер которых зависит от анатомических, оптико-физических и функциональных особенностей тканей, а также от энергетических и пространственных характеристик излучения и, прежде всего, от длины волны и интенсивности излучения. На этой стадии происходит нагревание вещества, переход энергии электромагнитного излучения в механические колебания, ионизация атомов и молекул, возбуждение и переход электронов с валентных уровней в зону проводимости, рекомбинация возбужденных атомов и др. При воздействии непрерывного лазерного излучения преобладает в основном тепловой механизм действия, в результате которого происходит свертывание белка, а при больших мощностях – испарение биоткани. При импульсном режиме (с длительностью импульсов <10 -2 с) механизм взаимодействия становится более сплошным и приводит к переходу энергии излучения в энергию механических колебаний среды, в частности ударной волны. При мощности излучения свыше 10 7 Вт и высокой степени фокусировки лазерного луча возможно возникновение ионизирующих излучений.

На второй стадии (физико-химической ) из ионов и возбужденных молекул образуются свободные радикалы, обладающие высокой способностью к химическим реакциям.

На третьей стадии (химической ) свободные радикалы реагируют с молекулами веществ, входящих в состав живой ткани, и при этом возникают молекулярные повреждения, которые в дальнейшем определяют общую картину воздействия лазерного излучения на облучаемую ткань и организм в целом. Схематически основные факторы, определяющие биологическое действие лазерного излучения, можно представить следующим образом:

Лазерное излучение представляет опасность главным образом для тканей, которые непосредственно поглощают излучение, поэтому с позиций потенциальной опасности воздействия и возможности защиты от лазерного излучения рассматривают в основном глаза и кожу.

Высокой чувствительностью к электромагнитным излучениям обладают роговица и хрусталик глаза, причем оптическая система глаза способна на несколько порядков увеличивать плотность энергии видимого и ближнего инфракрасного диапазона на глазном дне по отношению к роговице.

Длительное действие лазерного излучения видимого диапазона (не на много меньше ожогового порога) на сетчатку глаза может вызвать необратимые изменения в ней, а в ближнем инфракрасном диапазоне может привести к помутнению хрусталика. Клетки сетчатки после повреждения не восстанавливаются.

Действие лазерного излучения на кожу в зависимости от первоначальной поглощенной энергии приводит к различным поражениям: от легкой эритемы (покраснения) до поверхностного обугливания и, в конечном итоге, образования глубоких дефектов кожи.

Различают 6 видов воздействия ЛИ на живой организм :

1) термическое (тепловое) действие. При фокусировании лазерного излучения выделяется значительное количество теплоты в небольшом объеме за короткий промежуток времени;

2) энергетическое действие. Определяется большим градиентом электрического поля, обусловленного высокой плотностью мощности. Это действие может вызвать поляризацию молекул, резонансные и другие эффекты.;

3) фотохимическое действие. Проявляется в выцветании ряда красителей;

4) механическое действие. Проявляется в возникновении колебаний типа ультразвуковых в облучаемом организме.

5) электрострикция – деформация молекул в электрическом поле лазерного излучения;

6) образование в пределах клетки микроволнового электромагнитного поля.

Предельно-допустимыми уровнями (ПДУ) облучения приняты энергетические экспозиции. Для ПДУ непрерывного лазерного излучения выбирают энергетическую экспозицию наименьшей величины, не вызывающей первичных и вторичных биологических эффектов (с учетом длины волны и длительности воздействия). Для импульсно-периодического излучения, ПДУ облучения рассчитывают с учетом частоты повторения и воздействия серии импульсов.

При эксплуатации лазеров, помимо лазерного излучения, возникают и другие виды опасностей. Это – выделение вредных химических веществ, шум, вибрация, электромагнитные поля, ионизирующие излучения и др.

Термин «лазер» («laser») составлен из начальных букв пяти слов «Light amplification by stimulated emission of radiation», что в переводе с английского означает « Усиление света путем его вынужденного излучения». В сущности, лазер представляет собой источник света, в котором путем внешнего освещения достигается возбуждение атомов определенного вещества. И когда эти атомы под воздействием внешнего электромагнитного излучения возвращаются в исходное состояние, происходит вынужденное излучение света.

Принцип действия лазера

Принцип действия лазера сложен. Согласно планетарной модели строения атома, предложенной английским физиком Э.Резерфордом (1871-1937), в атомах различных веществ электроны движутся вокруг ядра по определенным энергетическим орбитам. Каждой орбите соответствует определенное значение энергии электрона. В обычном, невозбужденном, состоянии электроны атома занимают более низкие энергетические уровни. Они способны только поглощать падающее на них излучение. В результате взаимодействия с излучением атом приобретает дополнительное количество энергии, и тогда один или несколько его электронов переходят в отдаленные от ядра орбиты, то есть на более высокие энергетические уровни. В таких случаях говорят, что атом перешел в возбужденное состояние. Поглощение энергии происходит строго определенными порциями - квантами. Избыточное количество энергии, полученное атомом, не может в нем оставаться бесконечно долго - атом стремится избавиться от излишка энергии.

Возбужденный атом при определенных условиях будет отдавать полученную энергию так же строго определенными порциями, в процессе его электроны возвращаются на прежние энергетические уровни. При этом образуются кванты света (фотоны), энергия которых равна разности энергии двух уровней. Происходит самопроизвольное, или спонтанное излучение энергии. Возбужденные атомы способны излучать не только сами по себе, но и под действием падающего на них излучения, при этом излученный квант и квант, «породивший» его, похожи друг на друга. В результате индуцированное (вызванное) имеет ту же длину волны, что и вызвавшая его волна. Вероятность индуцированного излучения будет нарастать при увеличении количества электронов, перешедших на верхние энергетические уровни. Существуют так называемые инверсные системы атомов, где происходит накопление электронов преимущественно на более высоких энергетических уровнях. В них процессы излучения квантов преобладают над процессами поглощения.

Инверсные системы используются при создании оптических квантовых генераторов - лазеров. Подобную активную среду помещают в оптический резонатор, состоящий из двух параллельных высококачественных зеркал, размещенных по обе стороны от активной среды. Кванты излучения, попавшие в эту среду, многократно отражаясь от зеркал бесчисленное количество раз пересекают активную среду. При этом каждый квант вызывает появление одного или нескольких таких же квантов за счет излучения атомов, находящихся на более высоких уровнях.

Рассмотрим принцип работы лазера на кристалле рубина. Рубин - природный минерал кристаллического строения, исключительно твердый (почти как алмаз). Внешние кристаллы рубина очень красивы. Их цвет зависит от содержания хрома имеет различные оттенки: от светло-розового до темно-красного. По химической структуре рубин - окись алюминия с примесью (0,5%) хрома. Атомы хрома - активное вещество рубинового кристалла. Именно они являются усилителями волн видимого света и источником лазерного излучения. Возможное энергетическое состояние ионов хрома можно представить в виде трех уровней (I, II и III). Чтобы активизировать рубин и привести атомы хрома в «рабочее» состояние, на кристалл навивают спиральную лампу - накачку, работающую в импульсном режиме и дающую мощное зеленое излучение света. Эти «зеленые» кванты тотчас поглощаются электронами хрома, находящимися на нижнем энергетическом уровне (I). Возбужденным электронам достаточно поглощенной энергии для перехода на верхний (III) энергетический уровень. Возвратиться в основное состояние электроны атомов хрома могут либо непосредственно с третьего уровня на первый, либо через промежуточный (II) уровень. Вероятность перехода их на второй уровень больше, чем на первый.

Большая часть поглощенной энергии переходит на промежуточный (II) уровень. При наличии достаточного интенсивного возбуждающего излучения представляется возможность получить на втором уровне больше электронов, чем осталось на основном. Если теперь осветить активизированный кристалл рубина слабым красным светом (этот фотон соответствует переходу со II в I основное состояние), то «красные» кванты как бы подтолкнут возбужденные ионы хрома, и они со второго энергетического уровня перейдут на первый. Рубин при этом излучит красный свет. Так как кристалл рубина представляет собой стержень, торцевые поверхности которого изготавливаются в виде двух отражающих зеркал, то отразившись от торцов рубина, «красная» волна вновь пройдет через кристалл и на своем пути всякий раз будет вовлекать в процесс излучения все большее число новых частиц, находящихся на втором энергетическом уровне. Таким образом, в кристалле рубина непрерывно накапливается световая энергия, которая выходит через его границы через одну из торцевых полупрозрачных зеркальных поверхностей в виде испепеляющего красного луча в миллион раз превосходящего по яркости луч Солнца.

Помимо рубина, в качестве активного вещества применят и другие кристаллы, например, твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла), газовые лазеры (активным веществом являются газ - смесь аргона и кислорода, гелия и неона, окись углерода), лазеры на красителях, химические лазеры, полупроводниковые лазеры.

В зависимости от устройства лазера его излучение может происходить в виде молниеносных отдельных импульсов («выстрелов»), либо непрерывно. Поэтому различают лазеры импульсного и непрерывного действия. К первым относится рубиновый лазер, а ко вторым - газовые. Полупроводниковые лазеры могут работать как в импульсном, так и в непрерывном режиме.

Лазерное излучение имеет свои характеристические черты. Это когерентность, монохроматичность и направленность.

Монохроматический - значит одноцветный. Благодаря этому свойству луч лазера представляет собой колебания одной длины волны, например, обычный солнечный свет - это излучение широкого спектра, состоящее из волн различной длины и различного цвета. Лазеры имеют свою, строго определенную длину волны. Излучение гелий-неонового лазера - красное, аргонового - зеленое, гелий кадмиевого - синее, неодимового - невидимое (инфракрасное).

Монохроматичность лазерного света придает ему уникальное свойство. Вызывает недоумение тот факт, что лазерный луч определенной энергии способен пробить стальную пластину, но на коже человека не оставляет почти никакого следа. Это объясняется избирательностью действия лазерного излучения. Цвет лазера вызывает изменения лишь в той среде, которая его поглощает, а степень поглощения зависит от оптических свойств материала. Обычно каждый материал максимально поглощает излучение лишь определенной длины волны.

Избирательное действие лазерных лучей наглядно демонстрирует опыт с двойным воздушным шаром. Если вложить зеленый резиновый шар внутрь шара из бесцветной резины, то получится двойной воздушный шар. При выстреле рубиновым лазером разрывается только внутренняя (зеленая) оболочка шара, которая хорошо поглощает красное лазерное излучение. Прозрачный наружный шар остается целым.

Красный свет рубинового лазера интенсивно поглощается зелеными растениями, разрушая их ткани. Наоборот, зеленое излучение аргонового лазера слабо абсорбируется листьями растений, но активно поглощается красными кровяными тельцами (эритроцитами) и быстро повреждает их.

Второй отличительной чертой лазерного излучения является его когерентность. Когерентность, в переводе с английского языка (coherency), означает связь, согласованность. А это значит, что в различных точках пространства в одно и то же время или в одной и той же точке в различные отрезки времени световые колебания координированы между собой. В обычных световых источниках кванты света выпускаются беспорядочно, хаотически, Несогласованно, то есть некогерентно. В лазере излучение носит вынужденный характер, поэтому генерация фотонов происходит согласованно и по направлению и по фазе. Когерентность лазерного излучения обусловливает его строгую направленность - распространение светового потока узким пучком в пределах очень маленького угла. Для света лазеров угол расходиомсти может быть меньше 0,01 минуты, а это значит, что лазерные лучи распространяются практически параллельно. Если сине-зеленый луч лазера направить на поверхность Луны, которая находится на расстоянии 400000 км. От Земли, то диаметр светового пятна на Луне будет не больше 3 км. То есть на дистанции 130 км. Лазерный луч расходится меньше, чем на 1 м. При использовании телескопов лазерный луч можно было бы увидеть на расстоянии 0,1 светового года (1 световой год =10 в 13 степени км.).

Если мы попробуем сконцентрировать с помощью собирающей линзы свет обыкновенной электролампочки. То не сможем получить точечное пятно. Это связано с тем, что преломляющая способность волн различной длины, из которых состоит свет, различно, и лучи волн с одинаковой длиной собираются в отдельный фокус. Поэтому пятно получается размытым. Уникальное свойство лазерного излучения (монохроматичность и малая расходимость) позволяют с помощью системы линз сфокусировать его на очень малую площадь. Эта площадь может быть уменьшена настолько, что по размерам будет равна длине волны фокусируемого света. Так, для рубинового лазера наименьший диаметр светового пятна составляет примерно 0,7 мкм. Таким образом можно создать чрезвычайно высокую плотность излучения. То есть максимально сконцентрировать энергию. Лазер с энергией в 100 джоулей дает такие же вспышки, как и электрическая лампочка мощность в 100 ватт при горении в течение одних суток. Однако вспышка лазера длится миллионные доли секунды и, следовательно, та же энергия оказывается спрессованной в миллион раз. Вот почему в узком спектральном диапазоне яркость вспышки мощных лазеров может превышать яркость Солнца в биллионы раз. С помощью лазеров можно достигнуть плотности энергии излучения около 10 в 15 степени ватт на метр квадратный, в то время, как плотность излучения Солнца составляет только порядка 10 в 7 степени ватт на метр квадратный. Благодаря такой огромной плотности энергии в месте фокусировки пучка мгновенно испаряется любое вещество.

В процессе изготовления, испытания и эксплуатации лазерных изделий на обслуживающий персонал могут воздействовать физические, химические и психофизиологические опасные и вредные факторы.

К физическим факторам относятся:

  • · Лазерное излучение (прямое, рассеянное, зеркальное или диффузно отраженное);
  • · Высокое напряжение в цепях управления и источниках электропитания лазера (лазерных установок);
  • · Повышенный уровень ультрафиолетовой радиации от импульсных ламп накачки или кварцевых газоразрядных трубок в рабочей зоне;
  • · Повышенная яркость света от импульсных ламп накачки и зоны взаимодействия лазерного излучения с материалом мишени;
  • · Повышенный шум и вибрация на рабочем месте, возникающие при работе лазера (лазерной установки);
  • · Повышенный уровень ионизирующего рентгеновского излучения от газоразрядных трубок и др. элементов, работающих при анодном напряжении более 5 кВ;
  • · Повышенный уровень электромагнитных излучений ВЧ - и СВЧ - диапазонов в рабочей зоне;
  • · Повышенный уровень инфракрасной радиации в рабочей зоне;
  • · Повышенная температура поверхностей оборудования;
  • · Взрывоопасность в системах накачки лазеров;
  • · Возможность взрывов и пожаров при попадании лазерного излучения на горючие материалы.

К химическим факторам относятся:

  • · Загрязнение воздуха рабочей зоны продуктами взаимодействия лазерного излучения с мишенью и радиолиза воздуха (озон, окислы азота и др);
  • · Токсические газы и пары от лазерных систем с прокачкой хладагентов и др.

Психофизиологические факторы - это:

  • · Монотония, гипокинезия, эмоциональная напряженность, психологический дискомфорт;
  • · Локальные нагрузки на мышцы и кисти предплечья; напряженность анализаторных функций (зрение, слух).

В настоящее время лазеры прочно закрепились во всех сферах жизнедеятельности человека. Они используются в медицине, химии, физике, биологии и во многих других областях современной науки. Сложно переоценить вклад этого явления в прогресс человечества. Однако неосторожное использование этой технологии может привести к пагубным последствиям для здоровья человека. Ослепление, ожоги, электротравмы — это далеко не полный список увечий, которые можно получить при взаимодействии с лазером. Лазерное неэкранированное излучение большой мощности представляет собой серьёзную опасность если относится к нему легкомысленно и не соблюдать элементарные правила безопасности.

Данная статья поможет вам разобраться в нюансах этого явления и даст представление об угрозах, которые лазерное излучение представляет собой для здоровья человека. Так же вы получите представление об основах безопасной работы с лазером и узнаете, как современные лазеры делятся на классы по уровню угрозы для здоровья человека. Здесь так же можно ознакомиться с небольшой исторической справкой о лазерах.

Лазер как явление

LASER — Light Amplification by Stimulated Emission of Radiation. Как видите, за этим словом скрывается аббревиатура на английском языке. На русский это можно перевести как «усиление света индуцированным излучением». Усиление энергии до состояния повышенной интенсивности приводит к появлению лазерного излучения. В результате многократного отражения в системе зеркал происходит усиление излучения, и в итоге мы можем наблюдать явление, которое абсолютно уникально по своим физическим свойствам. Лазерный луч намного уже луча света обычной лампы, но их отличия на этом не заканчиваются. Лазерное излучение проецирует волну одной длины и один чистый цвет, кроме этого световые волны полностью совпадают во времени друг с другом. От обычного света лазерные лучи отличает их организованность (когерентность, если говорить научными терминами).

В 1916 году были сделаны первые шаги на пути изучения лазера. После длительных исследований небезызвестный Альберт Энштейн выдвинул свою теорию взаимодействия излучения с веществом, сделав таким образом возможной разработку квантовых усилителей, способных проецировать электромагнитные волны. Следующий значительный прорыв состоялся в 1928 году, когда Ланденбург провёл свою серию экспериментов. Результатом кропотливой работы стала формулировка условия нахождения индуцированного излучения как преобладание его над поглощением. И только более чем четверть века спустя, в 1955 году советские физики Басов и Прохоров сконструировали квантовый генератор с аммиаком в качестве активной среды. С тех пор огромное количество учёных стали участниками гонки по конструированию лазерных систем, не прекращающейся и сегодня.
Данная технология внесла неоценимый вклад в развитие медицины.

Многие задачи, которые казались до этого нерешаемыми, с усовершенствованием лазеров остались в прошлом. Его чудодейственные лучи вернули здоровье многим тысячам людей. Чего стоит только лазерная коррекция зрения, которая всего за 10 минут позволяет вернуть любому пациенту идеальное зрение. Эффективность этой операции достигает 100%. Косметологи так же нашли применение для этой технологии в своей деятельности. Излучение медицинского лазера даёт возможность селективно воздействовать на корни волос, пигментные пятна и другие дефекты кожи. Сегодня возможно быстро и почти безболезненно удалить родинку, как и надоевшую татуировку.

В своё время выдающийся французский учёный Луи де Бройль, произнёс пророческую фразу: «Лазеру уготовано грандиозное будущее. Тяжело предвидеть, как именно он будет применяться, но я считаю, что за лазером стоит целая техническая эпоха». И мы действительно живём в эпоху, когда почти не осталось сфер деятельности, в которых так или иначе не используются технологии на основе лазерных лучей. Современные измерительные приборы невозможно представить без применения лазерных лучей в их конструкции. Лазер позволил измерить расстояние от Земли до Луны, точность этих измерений составила несколько сотен метров. Применение лазерных лучей в сфере радиолокации позволило многократно повысить точность получаемых данных. Нет никаких сомнений, что эта технология ещё сыграет свою роль в дальнейшем научном и техническом прогрессе.

Как лазерные лучи воздействуют на человеческий организм?


Одной из характеристик лазерных лучей является крайне высокий уровень концентрации энергии. Пучок света, производимый лазером, способен повышать температуру поверхности, на которую он направлен. С помощью направленного облучения можно добиться деформации почти любой поверхности за небольшой промежуток времени. Концентрация колоссального энергетического потока на небольшой площади позволяет достичь температуры в более чем миллион градусов. Благодаря этому свойству лазеры получили широкое распространение в хирургии и материалообработке, оно же делает их угрозой для человеческой кожи при чрезмерном облучении. Повреждение кожного покрова лучом лазера аналогично термическому ожогу. Так же значительная опасность кроется в лазерном излучении, вырабатывающемся посредством фотохимического эффекта. Однако современные приборы сводят такой риск к минимуму.

Стоит заметить, что молниеносная скорость воздействия лазерных лучей дает возможность избежать болевых ощущений. Благодаря этому свойству, лазер получил широкое распространение в хирургии. В ходе непродолжительных операций с применением лазера не требуется какой-либо анестезии. Мало какая серьезная операция может быть осуществима без обезболивания. При этом временные затраты на такие операции гораздо ниже, чем при традиционном оперировании с помощью скальпеля.

Зачастую работа лазерных установок сопровождается шумом, который может достигать уровня до 120 Дб. Длительно пребывание в помещении с таким оборудованием может стать причиной проблем со слухом. Так же химическая реакция мощного лазерного луча и воздуха сопровождается обильным выделением озона. У людей, вовлечённых в работу с лазерами на протяжении долгого времени, могут диагностироваться нарушения функций вестибулярного аппарата. Частота этих нарушений зависит от профессионального стажа. Лазерное излучение может стать причиной необратимых изменений в человеческом организме, расстройства органов зрения, центральной нервной системы и вегетативной системы.

Берегите глаза


Глаз — один из самых хрупких элементов нашего организма. В отличие от остальных органов, он не имеет защиты от окружающей среды. При попадании невидимого инфракрасного лазера в глаз человек ничего не почувствует, потому что мозг не воспримет его как источник света и защитной реакции не последут. Поглощение ультрафиолетового излучение роговицей глаза может привести к отёку эпителия и эрозии. В особенно тяжелых случаях возможно помутнение передней камеры. Сетчатка глаза подвержена риску в гораздо большей степени. После того, как лазерное излучение достигает сетчтаки, оно распространяется дальше на всю оптическую систему органа зрения.

Если прямой лазерный луч попадет в глаз, когда взгляд направлен вдаль, последствия могут быть очень плачевными. Концентрация спектра коллимированного луча на сетчатке в этот момент может достигать 100000 крат. На глазном дне при таком повреждении обнаруживаются ожог и отек сетчатки, кровоизлияние с дальнейшим появлением рубца и уменьшением остроты зрения. Столь мощное воздействие может даже привести к слепоте. Из этого следует вывод, что вероятность потери зрения в результате сильного излучения достаточно велика.

Классификация лазеров

Подавляющее большинство лазерного оборудования, изготавливаемого во всем мире, производится и сертефицируется с оглядкой на международные стандарты, согласованные американским объединением CDRH (Center for Devices and Radiological Health) . В зависимости от уровня угрозы, которую различные лазерные установки представляют для человеческого организма, они делятся на четыре основных класса:

Класс I (безопасные) — маломощные лазерные системы, не излучающие вредный для человека уровень радиации. Такие лазеры не могут являться причиной повреждения глаза. К данному классу так же относятся приборы, оборудованные корпусом, не выпускающим луч лазера наружу. В таком случае луч может быть мощнее допустимой для первого класса нормы.

Класс II (низкий уровень опасности) — эти лазеры уже способны нанести ущерб человеческому глазу, при зрительном контакте более 0,25 секунды. К ним не относятся приборы, вырабатывающие излучение с невидимой волной.

Класс III (средний уровень опасности) — даже непродолжительный визуальный контакт с лучом подобной лазерной установки может привести к повреждениям органа зрения. Работать с такими устройствами без специальных защитных очков нельзя ни в коем случае. Рассеянное излучение не представляет опасности при расстоянии визуального контакта более 13 сантиметров и времени менее 10 секунд. Имеется значительный риск воспламенения при соприкосновении луча с огнеопасными материалами. На выходе мощность составляет около 500 мВт.

Класс IV (высокоопасные) — мощные лазеры, представляющие опасность для здоровья. Они в состоянии нанести значительные повреждения сетчатке глаза непродолжительным излучением прямого луча. В практике использования подобных приборов были ситуации, когда луч случайно отражался в глаз от обычной отвертки или пугавицы на рукаве. Воздействие этих лазеров с большой долей вероятности может привести к серьезным ожогам на коже, а так же стать причиной воспламенения горючих и прочих легковоспламеняющихся материалов. Опасность создает и повышенно ультрафиолетовое излучение импульсных ламп. В последнее время правительствами многих стран ведутся активные работы по адаптации таких лазеров для военных целей. Компании, представляющие свои разработки на выставках, получают финансирование от госудаства.

Меры предосторожности


В неумелых руках мощный лазер представляет не меньшую опасность, чем огнестрельное оружие. Только сертефицированный персонал допускается к работе с такими устройствами. Лучшей профилактикой лазерного излучения является соблюдение правил эксплуатации и защиты. Использование лазерных установок II-III уровней предполагает ограждение зоны работы с лазером и экранирование излучения. Лазеры IV уровня должны быть полностью изолированны от остального производства, работа с ними проводится дистанционно. Поверхности в таких помещениях окрашиваются в цвета с малым коэффициентом отражения. При недостаточном уровне освещения работа с лазерами недопустима. Окна для наблюдения должны быть оборудованы защитным стеклом. В случае необходимости ремонта прибора, категорически запрещено использование деталей и расходных материалов, несогласованных с производителем.

Средства защиты от лазерного излучения должны гарантировать предотвращение пагубного действия излучения или уменьшение его величины до уровня, не превышающего безопасного. В экипировку работников, взаимодействующих с лазером должны входить щитки, маски, технологические халаты и специальные очки. Один раз в год им необходимо проходить полный медицинский осмотр. Такая предосторожность более чем оправдана. Большая часть исследователей, изучающих здоровье обслуживающего персонала лазеров, установили у них предрасположенность к астеническим и вегетативно-сосудистым расстройствам. Доступ к участкам производства, на которых проходит работа с лазером, должен быть строго ограничен. Лазерная установка должна быть надежно защищена от несогласованного использования с помощью выключателя, запираемого на ключ, или другого аналогичного механизма.

Использование лазерных приборов связано с определенной опасностью для человека. В данной работе будут рассмотрены только особенности практического применения лазерных приборов и способы защиты, связанные с возможностью поражения глаз и кожных покровов человека. При этом основополагающими нормативными документами являются: 825-я публикация Международной технической комиссии (МЭК) под названием "Радиационная безопас-ность лазерных изделий, классификация оборудования, требования и руководство для потребителей" как наиболее компетентная рекомендация мирового класса; новейшая отечественная разработка СНиП; ГОС

Непосредственно на человека оказывает лазерное излучение любой длины волны; однако в связи со спектральными особенностями поражения органов и существенно различными предельно допустимыми дозами облучения обычно различают воздействие на глаза и кожные покровы человека.

Можно выделить два направления применения лазеров и отрасли. Первое направление связано с целенаправленным воздействием на обрабатываемое вещество (микросварка, термообработка, резка хрупких и твердых материалов, подгонка параметров микросхем и др.), второе направление -медицина - находит все большее развитие.

Диапазон длин волн, излучаемых лазерами, охватывает видимый спектр и распространяется в инфракрасную и ультрафиолетовую области. Для каждого режима работы лазера и спектрального диапазона рекомендуются соответствующие предельно допустимые уровни (ПДУ) для энергии (W) и мощности (P) излучения, прошедшего ограничивающую апертуру d = 7 мм. Для видимого диапазона или d = 1.1 мм, для остальных, энергетической экспозиции (H) и облученности (E), усредненных по ограничивающей апертуре: H = W / Sa , E = P / Sa ,где Sa - ограничивающая апертура.

Хронические ПДУ в 5 - 10 раз ниже ПДУ однократного воздейс-твия. При одновременном воздействии ЛИ разного диапазона их действие суммируется с умножением на соответствующий энерговклад.

Лазерное излучение характеризуется некоторыми особеннос-тями:

1 - широкий спектральный (&=0.2..1 мкм) и динамический (120..200 дБ);

2 - малая длительность импульсов (до 0.1 нс.);

3 - высокая плотность мощности (до 1e+9 Вт/см^2) энергии;

4 - Измерение энергетических параметров и характеристик лазерного излучения

Виды действия лазерного излучения

Наиболее опасно лазерное излучение с длиной волны:

  • 380¸1400 нм - для сетчатки глаза,
  • 180¸380 нм и свыше 1400 нм - для передних сред глаза,
  • 180¸105 нм (т.е. во всем рассматриваемом диапазоне) - для кожи.

Основную опасность при эксплуатации лазера представляет прямое лазерное излучение.

Степень потенциальной опасности лазерного излучения зависит от мощности источника, длины волны, длительности импульса и чистоты его следования, окружающих условий, отражения и рассеяния излучения.

Биологические эффекты, возникающие при воздействии лазерного излучения на организм человека, делятся на две группы:

  • Первичные эффекты - органические изменения, возникающие непосредственно в облучаемых тканях;
  • Вторичные эффекты - неспецифические изменения, появляющиеся в организме в ответ на облучение.
  • Наиболее подвержен поражению лазерным излучениям глаз человека. Сфокусированный на сетчатке хрусталиком глаза лазерный луч будет иметь вид малого пятна с еще более плотной концентрацией энергии, чем падающее на глаз излучение. Поэтому попадание лазерного излучения в глаз опасно и может вызвать повреждение сетчатой и сосудистой оболочек с нарушением зрения. При малых плотностях энергии происходит кровоизлияние, а при больших - ожег, разрыв сетчатой оболочки, появление пузырьков глаза в стекловидном теле.
  • Лазерное излучение может вызвать также повреждение кожи и внутренних органов человека. Повреждение кожи лазерным излучением схоже с термическим ожогом. На степень повреждения влияют как входные характеристики лазеров, так и цвет, и степень пигментации кожи. Интенсивность излучения, которая вызывает повреждение кожи, намного выше интенсивности, приводящей к повреждению глаза.

Обеспечение лазерной безопасности

Методы и средства защиты от воздействия лазерного излучения можно подразделить на организационные, инженерно-технические и средства индивидуальной защиты. Надежной защитой от случайного попадания на человека является экранирование луча световодом на всем пути его действия. В качестве средств индивидуальной защиты применяются специальные защитные очки, стекла в которых подбираются в соответствии с ГОСТ 9411-81Е; технологические халаты и перчатки, изготавливаемые из хлопчатобумажной ткани светло-зеленого или голубого цвета.

В презентации к работе представлены показатели допустимых уровней лазерного излучения, а также иллюстрационный материал по видам отрицательного воздействия лазерного излучения на организм человека и способам защиты.