Строительство и ремонт своими руками

Блокинг генератор для светодиода на одном транзисторе своими руками: схема с самозапиткой. Низковольтные преобразователи напряжения для светодиодов Светодиодный фонарик на одном транзисторе схема

Предостережение: белые светодиоды сравнительно дороги, поэтому я предлагаю включить небольшой резистор (от 1 до 10 Ом) последовательно с катодом светодиода для ограничения и измерения пикового тока. Во время тестирования схемы можно измерять падение напряжения на этом резисторе с помощью либо осциллографа, либо пикового детектора, чтобы убедиться, не превышает ли пиковый ток значения, рекомендованного производителем светодиодов. Отталкиваясь от этих рекомендаций, для большей надежности, постараемся получить пиковый ток не выше половины от максимального.

Обзор

Компактный импульсный преобразователь, который может обеспечить достаточное напряжение для питания белых светодиодов, состоит из минимального числа деталей. Светильник, который мы получим, по количеству люмен.часов на фунт веса батареи питания гораздо эффективнее, чем лампа накаливания. К тому же цвет свечения определяется излучением люминофора светодиода, поэтому цвет свечения практически не меняется, даже когда батарея полностью разрядится. В результате батарея служит долго. Эта дешева и подходит для применения в фонариках, аварийном освещении и других устройствах, в которых необходимо запитать белые светодиоды от одного или двух первичных элементов питания.

Схема

Не может быть проще схемы, чем эта. Блокинг-генератор состоит из транзистора, резистора 1 кОм и катушки индуктивности. При нажатии кнопки питания транзистор открывается током, текущим через резистор 1 кОм. Напряжение, которое появляется на участке индуктивности от средней точки до коллектора транзистора наводит напряжение на резисторе 1 кОм, которое может быть даже выше, чем напряжение аккумулятора, тем самым, обеспечивая положительную обратную связь. При наличии напряжения между отводом катушки и коллектором транзистора, ток коллектора постоянно растет. Из-за положительной обратной связи транзистор остается в насыщении пока что-то не произойдет с током его базы.

В какой-то момент падение напряжения на участке индуктивности от ее средней точки до коллектора транзистора приближается к значению напряжения батареи (на самом деле напряжение батареи минус напряжение насыщения коллектор-эммитер транзистора). С этого момента напряжение больше не наводится в катушке от отвода до резистора 1 кОм, и напряжение на базе начинает понижаться и становится отрицательным, ускоряя, таким образом, выключение транзистора. Хотя теперь транзистор выключен, катушка индуктивности остается источником тока, и напряжение на коллекторе повышается.

Напряжение на коллекторе быстро становится достаточно высоким для возникновения тока в светодиоде, и он течет до тех пор, пока индуктивность не разрядится. Затем напряжение на коллекторе начинает «звонить», раскачиваясь от уровня «земли» до питания, открывая транзистор и начиная другой цикл.

Индуктивность

Если вы проектируете эту схему не для коммерческого применения, у вас есть большой выбор вариантов конструкции индуктивности. Размер сердечника, его проницаемость и характеристика насыщения (физические размеры, µ и Bs) определяют, сколько ампер-витков он сможет обеспечить до насыщения. Если сердечник насыщается быстрее, чем падение напряжения на участке индуктивности от отвода до коллектора транзистора достигнет напряжения батареи, схема в любом случае сразу же переключится, потому что насыщение сердечника делает катушку подобной резистору и индуктивная связь между коллекторной и базовой (сторона с резистором 1 кОм) половинами катушки очень сильно падает. Это приводит к такому же эффекту, как и приближение падения напряжения на катушке к напряжению батареи. Сечение провода определяет, сколько ампер выдает схема перед тем, как переключиться из-за роста падения напряжения. Параметры сердечника катушки индуктивности (в основном физические размеры и магнитная проницаемость) определяют, сколько микросекунд катушка заряжается током коллектора, который возрастет до момента отключения транзистора. Эти параметры также определяют, как долго ток будет течь через светодиод, пока транзистор выключен. Практически все характеристики катушки индуктивности влияют на работу этой схемы.

Я сделал эту схему на ферритовых кольцах нескольких миллиметров в диаметре и на тороидальных сердечниках с сечением до нескольких сантиметров (обратите внимание на индуктивность на ржавом гвозде, описаную ниже).

Вот, в общем, взаимосвязь между размерами сердечника и характеристиками дросселя:

  • Большой сердечник: легко намотать, низкая частота переключения, повышенная мощность.
  • Маленький сердечник: сложно намотать, более высокая частота переключения, меньшая мощность.

Как начать. Возьмите сердечник катушки, предпочтительно из феррита, и намотайте на нем 20 витков. Сделайте отвод в виде короткой петли провода, затем продолжите намотку еще 20 витков. Увеличение количества витков ведет к снижению рабочей частоты, уменьшение - к увеличению частоты. Я наматывал всего 10 витков с отводом от середины (5+5) и работала эта катушка на частоте 200 кГц. Посмотрите описываемую ниже схему, собранную в цоколе лампочки, работающую на частоте порядка 200 кГц.

Улучшенная схема

Эта схема привлекательна тем, что содержит минимальное число элементов. Светодиод питается импульсным током. Импульс начинается с момента, когда напряжение на светодиоде достигает его прямого рабочего напряжения, которое выше напряжения батареи, что не влияет на переключение транзистора. Недостатком является то, что отношение пикового тока к среднему току светодиода является довольно высоким, оно может быть 3:1 или 5:1, в зависимости от параметров схемы (в основном от индуктивности катушки и напряжения аккумулятора). Если вы хотите, чтобы при заданном пиковом токе светодиод светил ярче, можете добавить диод и конденсатор, показанные на схеме ниже.

Один критик предложил хорошую идею: при наличии свободного места добавить развязывающий конденсатор между отрицательным выводом батареи и средней точкой дросселя. Некоторые аккумуляторы имеют высокое выходное сопротивление, и этот конденсатор может увеличить выходной ток схемы. Конденсатора емкостью 10 мкФ должно быть достаточно, но, если вы используете дроссель очень большой индуктивности, емкость лучше увеличить.

Где вы разместите источник питания?

Так как эта схема содержит мало элементов, я смог все их, в том числе индуктивность, резистор 1 кОм, транзистор 2N4401 (между прочим, в корпусе ТО-92), выпрямительный диод, чип конденсатор и светодиод NSPW315BS фирмы Nichia вместе с маленькой каплей клея поместить в основании лампы-ручки.

Применение светодиода взамен лампочки позволяет разработать компактный фонарик. Он дает достаточно света, чтобы ходить по улице в безлунную ночь. Я оценил время работы фонарика, потребляющего ток около 35 мА от батареи 1.5 В. Получилось, что он будет непрерывно работать как минимум 30 часов. Это довольно долго. Параметры нескольких щелочных батареек Duracell можно найти .

Цвет свечения остается неизменно голубовато-белым, даже при снижении напряжения батареи, Если с таким устройством хорошо обращаться, оно будет служить очень долго. У меня был один такой фонарик, собранный по последней приведенной схеме, на протяжении 18 месяцев, и я пользовался им каждую ночь. Я лишь два раза заменил батарейку. Если бы контакты на батарейке не ухудшились из-за коррозии, я бы и не знал, что пришло время заменить ее, ведь фонарик прекрасно работал.

Ночной свет ржавого гвоздя

Эти схема блокинг-генераторов лучше работают с ферритовыми сердечниками, но иногда их трудно найти. Некоторые читатели выразили беспокойство по поводу изготовления индуктивности, и это понятно, поскольку для многих катушки индуктивности имеют ореол таинственности.

Я берусь доказать, что ничего сложного в катушках индуктивности нет, и что они очень важны. Однажды, из-за поломки авто ожидая эвакуатор, я заметил ржавый гвоздь около дороги. Он был 6.5 см длинной, и я решил использовать его для сердечника катушки индуктивности.

Я вытащил витую пару из одножильного медного провода ø0.5 мм из длинного кабеля CAT-5 (Ethernet). Этот провод похож на тот, который используется для прокладки телефонных линий внутри зданий. Я намотал 60 витков витой пары примерно в три слоя на гвозде, затем подсоединил начало одного проводника к концу другого проводника, и получилась катушка индуктивности на 120 витков с отводом от середины.

Я подключил к ней транзистор 2N2222 , резистор номиналом 1 кОм, 1.5 В пальчиковую батарейку и белый светодиод. Ничего не произошло. Тогда я приложил конденсатор 0.0027 мкФ к резистору 1 кОм (он оказался на рабочем столе) и светодиод ожил. Может, вам потребуется конденсатор примерно 0.001 мкФ. Светодиод прекрасно светится, и схема потребляет 20 мА тока от элемента питания AA. Сигнал на экране осциллографа выглядит ужасно, но главное в том, что схема возбудилась даже на этом ржавом гвозде, и увеличила начальные 1.5 В элемента АА до более чем 3 В, достаточных для свечения светодиода.

Те, кто знаком с некоторыми аспектами выбора сердечника катушки сразу же заметят, что вихревые токи будут огромными, так как железо имеет низкое сопротивление по сравнению с ферритом, или, например, воздухом, и что будут, вероятно, и другие потери. И дело не в том, что вы должны бежать и покупать гвозди, чтобы сделать светодиодную лампу, а в том, что эта схема оказалась весьма работоспособной. Если ржавого гвоздя и немного телефонного провода достаточно, чтобы засветить белый светодиод, то дроссель - не проблема. Итак, отдохните, пойдите и купите ферритовый сердечник и начните работать над проектом.

Где взять ферритовые сердечники

Вольфганг Дрихаус из Германии написал, что ферритовые сердечники используются в компактных люминесцентных лампах, и что он успешно применяет их в схеме питания светодиодов. На следующий день я посмотрел вверх и увидел, что некоторые лампы нужно заменить.

Некоторые компактные люминесцентные лампы в моем доме перегорели. После покупки новых ламп, и замены перегоревших, я отправился в гараж, чтобы разобрать одну из ламп. Первой проблемой было добраться до электроники в цоколе лампы. В последующем письме, Вольфганг поведал мне, что колбу лампы можно вскрыть и достать плату без повреждения стекла. Будьте осторожны, не разбейте стеклянных трубок лампы, так как они содержат токсичную ртуть.

Я хотел удостовериться в том, что эти сердечники будут полезны для меня, и удалил обмотки с «гантели» и тороидальной катушки. В процессе разборки катушки на сердечнике типа ЕЕ феррит треснул в нескольких местах, поэтому я не смог опробовать его в моей схеме.

На сердечник «гантель» я намотал 50 витков эмалированного провода ø0.2 мм, сделал центральный отвод, и затем намотал еще 50 витков. Собрал устройство из этой катушки, транзистора 2N4401, резистора 330 Ом, подключенного к базе транзистора, и белого светодиода в соответствии со схемой, приведенной в начале статьи. Когда я подключил источник питания 1.5 В, светодиод ярко вспыхнул. Это подтвердило, что катушку с таким сердечником в данной схеме можно применять.

На тороидальный сердечник я намотал 10 витков провода ø0.4 мм, выполнил отвод и намотал еще 10 витков. Подключив катушку в ту же схему (2N4401, 330 Ом, белый светодиод) с 1.5-вольтовым питанием, я увидел, что светодиод горит, хотя и не так ярко, как с предыдущей катушкой, но ведь и витков на тороиде было намотано только 20.

Так что теперь мы знаем, где брать ферритовые сердечники. Компактные люминесцентные лампы весьма доступны, и они со временем выходят из строя и требуют замены.

Другой читатель отметил, что еще один источник ферритовых сердечников - это кабели компьютерных периферийных устройств. На кабелях монитора, клавиатуры, на некоторых USB кабелях есть пластиковые утолщения, в которых, на самом деле, содержатся ферритовые сердечники. Если вы собираетесь выбросить старую клавиатуру в мусорный бак, почему бы сначала не отрезать феррит?

Окончание читайте

Блокинг генератор это генератор сигналов с глубокой трансформаторной обратной связью, формирующий кратковременные (обычно около 1 мкс) электрические импульсы, повторяющиеся через сравнительно большие интервалы. Применяются в радиотехнике и в устройствах импульсной техники. Выполняются с использованием одного транзистора или одной лампы. (википедия)

Я решил собрать светодиодный фонарь, который бы светил очень долго и был экономичным. Блокинг-генератор позволяет питаться от низкого напряжения. Светодиод, например, 5 мм светодиод током 20-50 мА.
В планах было использовать германиевые маломощные транзисторы марки "МП37", светодиодную ленту, мизинчиковые батарейки типа "ААА", и миниатюрный корпус.
В качестве корпуса я взял паинт-маркер, в него же планировалось встроить батарейки, блокинг генератор, наклеить светодиодную ленту и всё это запихать в упаковку для наушников - пластиковую колбу.

Сначала я Очистил паинт-маркер от краски растворителем, протер его салфеткой. Затем вырезал в днище отсек для 3-х батареек "ААА", вырезал из жести контакты и закрепил их с низу, внутри маркера на термоклей так чтобы они были изолированы от металла маркера. Для верхних контактов я вырезал шайбу из тонкого текстолита и на него на 2-х стороннем скотче приклеил контакты. Соединение батареек последовательное.


Аллюминиевая колба рвалась, так что пришлось её запаять с флюсом Ф64.

P.S. I have some another flashlights and if you would like, i can show to you my work.

ПРЕОБРАЗОВАТЕЛЬ ДЛЯ СВЕТОДИОДА

На смену лампам накаливания пришли светодиоды, которые во многих случаях успешно заменяют их. Но из-за нелинейной вольт-амперной характеристики, для питания осветительных светодиодов от батареи применяют различные преобразователи напряжения. Как известно, светодиод питается напряжением не менее 2 В, а в зависимости от типа и до 3.5 В. К тому-же необходим хотя-бы простейший стабилизатор тока, ведь в процессе снижения ёмкости батареи падает и яркость светодиода. Поэтому простой резистор по питанию, от батареи с повышенным напряжением, будет работать хуже чем преобразователь. Ниже предлагаются схемы простых преобразователей, которые доступны для сборки даже начинающими.

Схема питается от одной пальчиковой батареи и представляет собой блокинг - генератор. Импульсы повышенного напряжения появляется на коллекторе, выпрямляются диодом шоттки и заряжают конденсатор. Трансформатор T1 наматывается вручную на кольцевом сердечнике. Для этого берётся ферритовое кольцо К10х6х4 и мотается две обмотки по 20 витков проводом ПЭЛ 0.3. Вообще количество витков может составлять и 6:10, и 10:10, и 10:15. Для наилучшего кпд и яркости их надо подобрать экспериментально. Для каркаса используется всё, что есть.

В схеме используется транзистор с низким падением напряжения для достижения максимального КПД. Выходной ток можно регулировать резистором R1.

Далее мы видим несколько усложнённую схему с более стабильной генерацией. Потребляемый ток 15 мА. Преобразователь напряжения тоже выполнен по схеме однотактного генератора с индуктивной обратной связью на транзисторе и трансформаторе. Данные обмоток те-же самые.

Очередной модернизацией данного преобразователя, стала схема из китайского светодиодного фонаря:

Здесь и в других схемах в качестве диода используется диод Шоттки с малым падением напряжения (всё-таки каждые пол вольта на счету). Применяются диоды IN5817, 1GWJ43, 1SS319, или в крайнем случае советский Д311. Эти диоды можно взять из платы контроллера питания нерабочего литий - ионного аккумулятора от мобильного телефона. Следующие схемы преобразователей выполнены на двух транзисторах и отличаются повышенным выходным током - до 25 мА. Правильно собранный преобразователь в налаживании не нуждается, если не перепутаны обмотки трансформатора, в противном случае поменяйте их местами.

Трансформатор используется аналогичный, но число витков в обмотках составляет по 40. Транзисторы стоят С2458 и С3279. Благодаря обратной связи на транзисторе С2458, получается простая стабилизация тока и соответственно яркости светодиода.

Ещё один вариант преобразователя на двух транзисторах:

Здесь не нужно мотать трансформатор, так как используется готовый дроссель на 300 - 1000 мкГн.

Последняя схема преобразователя тоже была срисована из китайского светодиодного фонаря и прекрасно работает при сборке.

Первое включение правильно собранного устройства необходимо провести в режиме тестирования, при котором питание от батареи подают через резистор сопротивлением 10 Ом, чтоб не сгорели транзисторы при неправильном подключении выводов трансформатора. Если светодиод не светит, необходимо поменять местами выводы первичной или вторичной обмотки трансформатора. Если и это не помогает, проверьте исправность всех элементов и монтажа.

Из личного опыта могу заметить, что во всех приведённых схемах, часто с успехом запускаются и отечественные транзисторы КТ315 - КТ3102. Число обмоток трансформаторов следует подбирать по максимуму яркости и КПД. В качестве дросселей использовались готовые "всё что под руку попадало", от различной аппаратуры. Не рекомендуется ставить самые дешёвые (0.1 Вт) 5-мм светодиоды. Лучше доплатить и приобрести за 0.5 уе 10-мм светодиод. Яркость значительно повысится. Ещё лучшие результаты будут после установки специальных

Лирическое вступление

В данной статье будет рассмотрена модернизация карманного фонаря на примере устройства небезызвестной фирмы Philips. Итак, какие же у него могут быть недостатки? Как и у всех карманных фонарей, у этого прибора было замечено значительное уменьшение яркости свечения лампы накаливания при "подсаживании" батарей. И естественно, низкий КПД и срок службы. А, тем не менее, решение этих извечных проблем существует.

Светодиоды! Но достаточно ли будет заменить только источник света? Нет. В большинстве фонарей используется уже ставшая классической схема, в которой две батарейки на 1,5 вольта включены последовательно. Но напряжения в 3 вольта недостаточно для яркого свечения светодиода, поэтому, стоит включить в схему преобразователь. Преобразователь имеет более стабильный ток на выходе, когда на входе может быть и 0,5 В и меньше. Что происходит с ламповым фонарем, если его батареи разрядились до такого предела? Правильно, он не работает. Поэтому преобразователь является наиболее удачным ходом в решении этой проблемы.

Встает новая проблема: где его разместить? Ведь в корпусе фонаря зачастую нет места. Если у вас есть бескорпусные компоненты можно разметить прямо в цоколе лампы, а если нет? В этом поможет разобраться моя статья.

Схемотехника

Как я уже сказал, решение существует. Вполне оригинальное решение, я считаю.

Рассмотрим схему преобразователя:

На схеме изображен блокинг-генератор. Возбуждение достигается трансформаторной связью на трансформаторе Т1. Импульсы напряжения, возникающие в правой (по схеме) обмотке складываются с напряжением источника питания и поступают на светодиод VD1. Конечно, можно было бы исключить конденсатор и резистор в цепи базы транзистора, но тогда возможен выход из строя VT1 и VD1 при использовании фирменных батарей с низким внутренним сопротивлением. Резистор задает режим работы транзистора, а конденсатор пропускает ВЧ составляющую.

В схеме использовался транзистор КТ315 (как самый дешевый), сверхяркий светодиод (как самый яркий). О трансформаторе поговорим отдельно. Для его изготовления потребуется кольцо из феррита (ориентировочный размер 10х6х3 и проницаемостью около 1000 HH). Диаметр проволоки около 0,2 мм. На кольцо наматываются две катушки по 20 витков в каждой. Если у вас нет кольца, то можно использовать аналогичный по объему и материалу цилиндр. Только придется мотать уже 60-100 витков для каждой из катушек. Важный момент: мотать катушки нужно в разные стороны. На худой конец можно использовать гвоздь, но большой гвоздь, да и витков для одной катушки требуется уже порядка 150. Кроме того КПД гвоздя значительно ниже, чем у феррита.

Пожалуй, перейдем теперь к практике.

Практика

Рассмотрим фотографию фонарика. Это нужно чтобы понять смысл моих изысканий. Ничего футуристичного здесь нет, замечу только, что выключатель находится в кнопке «авторучки», а серый цилиндр металлический и проводит ток.

Итак, шаг первый. Создаем «корпус» устройства.

По типоразмеру батарейки делаем цилиндр. Например, типоразмер батареек в моем фонарике AAA. Его можно изготовить из бумаги (как я), или использовать отрезок любой жесткой трубки. Для проклейки используем «резиновый» клей, так как он хороший диэлектрик.

Проделываем отверстия по краям цилиндра, обматываем его залуженным проводником, пропускаем в отверстия концы проволоки. Фиксируем оба конца, но оставляем с одного из концов кусок проводника: чтобы можно было подсоединить преобразователь к спирали. (Гайка показанная на рисунке пока не нужна)

Теперь займемся сборкой самого преобразователя. У меня не было кольца из феррита (да оно и не влезло бы в фонарь), поэтому использовался цилиндр из аналогичного материала.

Цилиндр был изъят из катушки индуктивности от старого телевизора. На него аккуратно наматывается первая катушка. Витки скрепляются клеем. У меня залезло около 60 витков. Потом вторая, мотается в обратную сторону. У меня получилось опять 60 или около того; точно не считал – не получилось намотать аккуратно. Закрепляем клеем края. Сушим. В процессе сушки катушку можно слегка подогреть. Я положил ее на листке бумаги на плафон настольной лампы. Пусть сохнет. А мы идем дальше.

Собираем по схеме преобразователь:

Все располагается как на рисунке: транзистор, конденсатор резистор и т. д. Пассивные и активные элементы собрали, подпаиваем спираль на цилиндре, катушку. Ток в обмотках катушки должен идти в разные стороны! То есть если вы мотали все обмотки в одну сторону, то поменяйте местами выводы одной из них, иначе генерация не возникнет.

Радуемся, так как у нас получилось нижеследующее:

Все вставляем вовнутрь, а в качестве боковых заглушек и контактов используем гайки.

К одной из гаек подпаиваем выводы катушки, а к другой эмиттер VT1. Приклеиваем. маркируем выводы: там, где у нас будет вывод от катушек ставим « - », где вывод от транзистора с катушкой ставим «+» (чтобы было все как в батарейке).

Все. У вас получилось нечто похожее на то, что изображено на предыдущем рисунке.

Теперь следует изготовить «ламподиод». Берем обычный цоколь от отслужившей свое лампочки, и…

Один момент: на цоколе должен быть минус светодиода. Иначе ничего не заработает.

Существовал и другой вариант решения проблемы. Конечно, можно создать непосредственно модуль преобразователя со светодиодом в одном корпусе. В этом случае как вы уже вероятно заметили, нужно всего два контакта. Можно сделать и так. Зато в этом варианте решения нельзя легко менять светодиоды. Зачем менять? Очень просто, ведь можно использовать ультрафиолетовый светодиод, и проверять на подлинность денежные банкноты и много чего еще. Кроме того, я считаю, что мой способ решения проблемы более эргономичен и интересен.

Техника сборки

Как понятно из рисунка, преобразователь представляет собой «заменитель» второй батарейки. Но в отличие от нее, он имеет три точки контакта: с плюсом батарейки, с плюсом светодиода, и общим корпусом (через спираль). Однако, его местоположение в батарейном отсеке является определенным: он должен контактировать с плюсом светодиода. Говоря проще, последовательность сборки на картинке менять нельзя. Иначе, как вы уже догадались, устройство не будет работать.

Модернизированный фонарь в работе:

Такой фонарь более экономичен, эргономичен и, вследствие отсутствия второй батарейки легок. И главное достоинство! Все детали можно найти на помойке!

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315А

1 С любым буквенным индексом В блокнот
C1 Конденсатор 2700 пФ 1 В блокнот
R1 Резистор

1 кОм

1