Строительство и ремонт своими руками

Самостоятельный газовый заряд. Самостоятельный разряд, несамостоятельный разряд, разряд в газоразрядном промежутке рлвд. Понятие о плазме

В обычных условиях газ - это диэлектрик, т.е. он состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока.
Газ-проводник - это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Ионизация газа

Это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях.

Газовый разряд - это эл.ток в ионизированных газах.
Носителями зарядов являются положительные ионы и электроны. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц


- газ перестает быть проводником, если ионизация прекращается, это происходит в следствие рекомбинации (воссоединения противоположно заряженных частиц).

Существует самостоятельный и несамостоятельный газовый разряд.

Несамостоятельный газовый разряд
- если действие ионизатора прекратить, то прекратится и разряд.

Когда разряд достигает насыщения - график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора.

Самостоятельный газовый разряд
- в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (= ионизации эл. удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина).
Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при Ua = Uзажигания.

Тле́ющий разря́д - один из видов стационарного самостоятельногоэлектрического разряда в газах. Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока превращается в дуговой разряд.

Типичным примером тлеющего разряда, знакомым большинству людей, является свечение неоновой лампы.

ХАРАКТЕРИСТИКИ

Характерной чертой тлеющего разряда является большая величина падения потенциала вблизи катода. В отличие от нестационарных (импульсных) электрических разрядов в газах, основные характеристики тлеющего разряда остаются относительно стабильными во времени.

Энергия электронов. Среднее приобретение энергии электроном в одном эффективном столкновении. Истинные изменения энергии электрона при столкновениях. Соотношение между хаотической и дрейфовой скоростями.

Один электронвольт равен энергии, необходимой для переноса элементарного заряда в электростатическом поле между точками с разницей потенциалов в 1 В.

Билет №6

Явление переноса в газах. Диффузия, вязкость, поперечное сечение. Средняя длина свободного пробега атомов (молекул). Частота столкновений. Длина свободного пробега с учетом относительного движения частиц.

Диффузия.

Для газа диффузия – это распределение молекул примеси от источника (или взаимная диффузия газа).

Диффузия происходит в направлении уменьшения концентрации вещества и ведет к его равномерному распределению по занимаемому объему

Взякость

Вя́зкость (вну́треннее тре́ние ) - одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате работа, затрачиваемая на это перемещение, рассеивается в виде тепла.

Грубо говоря – трение в газах и жидкостях.

Поперечное сечение.

Эффективное поперечное сечение - это физическая величина, характеризующая вероятность перехода системы двух взаимодействующих частиц в определённое конечное состояние.


Газы при не слишком высоких температурах и при давлениях, близких к атмосферному, являются хорошими изоляторами. Это объясняется тем, что газы при обычных условиях состоят из нейтральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричества, когда некоторая часть его молекул ионизуется, Для этого газ надо подвергнуть действию какого-либо ионизатора (например, использовать пламя свечи, ультрафиолетовое и рентгеновское излучения, g-кванты, потоки электронов, протонов, a-частиц и т. д). Энергия ионизации, атомов различных газов лежит в пределах 4 - 25 эВ. В ионизованном газе появляются заряженные частицы, способные двигаться под действием электрического поля - положительные и отрицательные ионы и свободные электроны.

Прохождение электрического тока через газы называется газовым разрядом .

Одновременно с процессом ионизации газа всегда идет и обратный процесс - процесс рекомбинации : положительные и отрицательные ионы, положительные ионы и электроны, встречаясь, соединяются между собой с образованием нейтральных атомов и молекул. Баланс их скоростей определяет концентрацию заряженных частиц в газе. Процессы рекомбинации ионов, также как и возбуждение ионов, не приводящее к ионизации, приводят к свечению газа, цвет которого определяется свойствами газа.

Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, приложенным напряжением, плотностью тока и т. д.


Рассмотрим цепь, содержащую газовый промежуток, подвергающийся непрерывному, постоянному по интенсивности воздействию внешнего ионизатора.

В результате ионизации газа и в цепи потечет ток, зависимость которого от приложенного напряжения дана на рис.

На участке кривой ОА ток возрастает пропорционально напряжению, т. е. выполняется закон Ома. При дальнейшем увеличении напряжения закон Ома нарушается: рост силы тока замедляется (участок АВ) и, наконец, прекращается совсем (участок ВС). Т.е. получаем ток насыщения, величина которого определяется мощностью ионизатора Это достигается тогда, когда все ионы и электроны, создаваемые внешним ионизатором за единицу времени, за это же время достигают электродов. Если в режиме ОС прекратить действие ионизатора, то прекращается и разряд. Разряды, существующие только под действием внешних ионизаторов, называются несамостоятельными . При дальнейшем увеличении напряжения между электродами сила тока вначале медленно (участок CD), а затем резко (участок DE) возрастает и разряд становиться самостоятельным . Разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным .

Механизм возникновения самостоятельного разряда следующий. При больших напряжениях возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем сталкиваясь с молекулами газа, ионизируют их, в результате чего образуются вторичные электроны и положительные ионы. Положительные ионы двигаются к катоду, а электроны - к аноду. Вторичные электроны вновь ионизируют молекулы газа, и, следовательно, общее количество электронов и ионов будет возрастать по мере продвижения электронов к аноду лавинообразно. Это является причиной увеличения электрического тока на участке CD . Описанный процесс называется ударной ионизацией . Ударная ионизация под действием одних лишь электронов недостаточна для поддержания разряда при удалении внешнего ионизатора. Для поддержания разряда необходимо, чтобы электронные лавины «воспроизводились», т. е. чтобы в газе под действием каких-то процессов возникали новые электроны. Это наступает при значительных напряжениях между электродами газового промежутка, когда к катоду устремляются лавины положительных ионов, которые выбивают из него электроны. В этот момент, когда кроме электронных лавин возникают еще и ионные, сила тока растет уже практически без увеличения напряжения (участок DE на рис.), т.е. возникает самостоятельный разряд. Напряжение, при котором возникает самостоятельный разряд, называется напряжением пробоя .

Необходимо отметить, что при разряде в газах реализуется особое состояние вещества, называемое плазмой. Плазмой называется сильно ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Различают высокотемпературную плазму, возникающую при сверхвысоких температурах, и газоразрядную плазму, возникающую при газовом разряде. Плазма характеризуется степенью ионизации a - отношением числа ионизованных частиц к полному их числу в единице объема плазмы. В зависимости от величины a говорят о слабо (а составляет доли процента), умеренно (несколько процентов) и полностью (близко к 100%) ионизованной плазме.

Различают четыре типа самостоятельного разряда: тлеющий, искровой, дуговой и коронный .

1. Тлеющий разряд возникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30 - 50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении ~ 5,3 - 6,7 кПа (несколько мм рт ст) возникает разряд в виде светящегося извилистого шнура красноватого цвета, идущего от катода к аноду. При дальнейшем понижении давления (~13 Па) разряд имеет следующую структуру.

Непосредственно к катоду прилегает темный тонкий слой 1 – астоново темное пространство , далее следует тонкий светящийся слой 2 - первое катодное свечение или катодная пленка , затем следует темный слой 3 - катодное (круксовое) темное пространство , переходящее в дальнейшем в светящийся слой 4 - тлеющее свечение , имеющее резкую границу со стороны катода, постепенно исчезающую со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. С тлеющим свечением граничит темный промежуток 5-фарадеево темное пространство , за которым следует столб ионизованного светящегося газа 6 - положительный столб . Положительный столб существенной роли в поддержании разряда не имеет. Приложенное напряжение распределяется вдоль разряда неравномерно. Практически почти все падение потенциала приходится на три первых слоя и называется катодным падением потенциала .

Механизм образования слоев следующий. Положительные ионы вблизи катода, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В темном астоновом пространстве электроны разгоняются и возбуждают молекулы, которые начинают испускать свет, образуя катодную пленку 2. Электроны пролетевшие без столкновений пленку 2 ионизируют молекулы газа за этой пленкой. Образуется много положительных и отрицательных зарядов. При этом интенсивность свечения уменьшается. Эта область представляет собой катодное (круксовое) темное пространство 3. Электроны, возникшие в катодном темном пространстве, проникают в область 4 тлеющего свечения, которое обусловлено их рекомбинацией с положительными ионами. Далее оставшиеся электроны и ионы (их мало) проникают путем диффузии в область 5 – фарадеево темное пространство. Оно кажется темным потому, что концентрация рекомбинирующих зарядов мала. В области 5 существует электрическое поле, которое разгоняет электроны и в области положительного столба 6 они производят ионизацию, в результате чего образуется плазма. Свечение положительного столба в основном связано с переходами возбужденных молекул в основное состояние. Оно имеет характерный для каждого газа цвет. В тлеющем разряде особое значение для его поддержания имеют только три его части - до тлеющего свечения. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны с катода (вторичная эмиссия). В области тлеющего свечения же происходит ударная ионизация электронами молекул газа. Образующиеся при ударной ионизации положительные ионы устремляются к катоду и выбивают из него новые электроны, которые, в свою очередь, опять ионизируют газ и т. д. Таким образом непрерывно поддерживается тлеющий разряд.

Применение в технике. Свечение положительного столба, имеющее характерный для каждого газа цвет, используется в газоразрядных трубках для создания реклам (неоновые газоразрядные трубки дают красное свечение, аргоновые - синевато-зеленое) и в лампах дневного света.

2. Искровой разряд возникает при больших напряженностях электрического поля (~3 10 б В/м) в газе, находящемся под давлением порядка атмосферного. Объяснение искрового разряда дается на основе стримерной теории, согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованного газа - стримеров . Стримеры возникают как в результате образования электронных лавин посредством ударной ионизации, так и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие моменты времени и устремляются мощные потоки электронов, образующие каналы искрового разряда. Из-за выделения при рассмотренных процессах большого количества энергии газ в искровом промежутке нагревается до очень высокой температуры (примерно 10 4 о C), что приводит к его свечению. Быстрый нагрев газа ведет к повышению давления и возникновению ударных волн, объясняющих звуковые эффекты при искровом разряде. Например, потрескивание в слабых разрядах и мощные раскаты грома в случае молнии.

Применение в технике. Для воспламенения горючей смеси в двигателях внутреннего сгорания и предохранения электрических линий передачи от перенапряжений (искровые разрядники).

3. Дуговой разряд . Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непрерывным, т.е. возникает дуговой разряд. При этом ток резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд можно получить от источника низкого напряжения, минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу. При атмосферном давлении дуговой разряд имеет температуру ~3500 о C. По мере горения дуги на аноде образуется углубление - кратер, являющийся наиболее горячим местом дуги. дуговой разряд поддерживается за счет а интенсивной термоэлектронной эмиссии из катода, а также термической ионизации молекул, обусловленной высокой температурой газа.

Применение - для сварки и резки металлов, получения высококачественных сталей (дуговая печь) и освещения (прожекторы, проекционная аппаратура).

4. Коронный разряд - высоковольтный электрический разряд при высоком (например, атмосферном) давлении в резко-неоднородном поле вблизи электродов с большой кривизной поверхности (например, острия). Когда напряженность поля вблизи острия достигает 30 кВ/м, то вокруг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда. Это явление получило в древности название огней святого Эльма. В зависимости от знака коронирующего электрода различают отрицательную или положительную короны.

Применение - в электрофильтрах, применяемых для очистки промышленных газов от примесей, при нанесении порошковых и лакокрасочных покрытий.

Тема 7. Электропроводность жидкостей и газов.

§1. Электрический ток в газах.

§2. Несамостоятельный и самостоятельный газовые разряды.

§3. Виды несамостоятельного разряда и их техническое использование.

§4. Понятие о плазме.

§5. Электрический ток в жидкостях.

§6. Законы электролиза.

§7. Технические применения электролиза (самостоятельно).

Электрический ток в газах.

В обычных условиях газы являются диэлектриками и становятся проводниками лишь тогда, когда они каким-то образом ионизированы. Ионизаторами могут служить рентгеновские лучи, космические лучи, ультрафиолетовые лучи, радиоактивное излучение, интенсивное нагревание и др.

Процесс ионизации газов заключается в том, что под действием ионизатора от атомов отщепляется один или несколько электронов. В результате этого вместо нейтрального атома возникают положительный ион и электрон.

Электроны и положительные ионы, возникшие во время действия ионизатора, не могут долго существовать раздельно и, воссоединяясь, вновь образуют атомы или молекулы. Это явление называется рекомбинацией .

При помещении ионизированного газа в электрическое поле на свободные заряды действуют электрические силы и они дрейфуют параллельно линиям напряжённости – электроны и отрицательные ионы к аноду (электрод некоторого прибора, присоединённый к положительному полюсу источника питания), положительные ионы – к катоду (электрод некоторого прибора, присоединённый к отрицательному полюсу источника тока). На электродах ионы превращаются в нейтральные атомы, отдавая или принимая электроны, тем самым замыкая цепь. В газе возникает электрический ток. Электрический ток в газах называется газовым разрядом . Таким образом, проводимость газов имеет электронно-ионный характер .

Несамостоятельный и самостоятельный газовые разряды.

Соберём электрическую цепь, содержащую источник тока, вольтметр , амперметр и две металлические пластины, разделённые воздушным промежутком.

Если поместить вблизи воздушного промежутка ионизатор , то в цепи возникнет электрический ток, исчезающий с действием ионизатора.

Электрический ток в газе с несамостоятельной проводимостью называется несамостоятельным газовым разрядом . График зависимости разрядного тока от разности потенциалов между электродами – вольтамперная характеристика газового разряда:

ОА – участок на котором соблюдается закон Ома. Только часть заряженных частиц доходит до электродов, частьрекомбинирует;

АВ – пропорциональность закона Ома нарушается и, начиная с ток не изменяется. Наибольшую силу тока, возможную при данном ионизаторе называют током насыщения ;


ВС –самостоятельный газовый разряд , в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (ионизации эл. удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина ).

В отличие от растворов электролита газ при нормальных условиях состоит из нейтральных молекул (или атомов) и потому является изолятором. Проводником электрического тока газ становится только в том случае, когда хотя бы часть его молекул ионизируется (превращается в ионы) под влиянием внешнего воздействия (ионизатора). При ионизации из молекулы газа вырывается обычно один электрон, в результате чего молекула становится положительным ионом. Вырвавшийся электрон либо остается некоторое время свободным, либо сразу же присоединяется («прилипает») к одной из нейтральных молекул газа, превращая ее в отрицательный ион. Таким образом, в ионизированном газе имеются положительные и отрицательные ионы и свободные электроны.

Для того чтобы выбить из молекулы (атома) один электрон, ионизатор должен совершить определенную работу, называемую работой ионизации; для большинства газов она имеет значения, лежащие в пределах от 5 до 25 эВ. Ионизаторами газа могут служить рентгеновские лучи (см. § 125), радиоактивные излучения (см. § 139), космические лучи (см. § 145), интенсивное нагревание, ультрафиолетовые лучи (см. § 120) и некоторые другие факторы.

Наряду с ионизацией в газе идет процесс рекомбинации ионов. В результате устанавливается равновесное состояние, характеризующееся определенной концентрацией ионов, величина которой зависит от мощности ионизатора.

При наличии внешнего электрического поля в ионизированном газе возникает ток, обусловленный движением разноименных ионов во взаимно противоположных направлениях и движением электронов.

Благодаря малой вязкости газа подвижность газовых ионов в тысячи раз больше, чем ионов электролита, и составляет примерно

При прекращении действия ионизатора концентрация ионов в газе быстро падает до нуля (в связи с рекомбинацией и выносом ионов к электродам источника тока) и ток прекращается. Ток, для существования которого необходим внешний ионизатор, называется несамостоятельным газовым разрядом.

При достаточно сильном электрическом поле в газе начинаются процессы самоионизации, благодаря которым ток может существовать и в отсутствие внешнего ионизатора. Такого рода ток называется самостоятельным газовым разрядом.

Процессы самоионизации в общих чертах заключаются в следующем. В естественных условиях в газе всегда имеется небольшое количество свободных электронов и ионов, создаваемых такими естественными ионизаторами, как космические лучи и излучения радиоактивных веществ, содержащихся в атмосфере, почве и воде. Достаточно сильное электрическое поле может разогнать эти частицы до таких скоростей, при которых их кинетическая энергия превысит работу ионизации. Тогда электроны и ионы, сталкиваясь (по пути к электродам) с нейтральными молекулами, будут ионизировать их. Образующиеся при соударениях новые (вторичные) электроны и ионы также разгоняются полем и в свою очередь ионизируют новые нейтральные молекулы и т. д. Описанная самоионизация газа называется ударной ионизацией.

Свободные электроны вызывают ударную ионизацию уже при напряженности поля порядка Что касается ионов, то они могут вызвать ударную ионизацию только при напряженности поля порядка Это различие обусловлено рядом причин, в частности тем, что для электронов длина свободного пробега в газе значительно больше, чем для ионов. Поэтому электроны приобретают необходимую для ударной ионизации кинетическую энергию при меньших напряженностях поля, чем ионы. Однако и при не слишком сильных полях положительные ионы играют весьма важную роль в самоионизации газа. Дело в том, что энергия этих ионов оказывается достаточной для выбивания электронов из металла. Поэтому разогнанные полем положительные ионы, ударяясь о металлический катод источника поля, выбивают из него электроны, которые в свою очередь разгоняются полем и производят ударную ионизацию нейтральных молекул.

Ионы и электроны, энергия которых недостаточна для ударной ионизации, могут, тем не менее, при столкновении с молекулами приводить их в возбужденное состояние, т. е. вызывать некоторые энергетические изменения в их электронных оболочках. Возбужденная молекула (или атом) переходит затем в нормальное состояние, испуская при этом порцию электромагнитной энергии - фотон (процессы

возбуждения атомов и испускания и поглощения ими фотонов будут рассмотрены в § 132-136). Испускание фотонов проявляется в свечении газа. Кроме того, фотон, поглощаемый какой-нибудь из молекул газа, может ионизировать ее; такого рода ионизация называется фотонной. Наконец фотон, попадающий на катод, может выбивать из него электрон (внешний фотоэффект), который затем вызовет ударную ионизацию нейтральной молекулы.

В результате ударной и фотонной ионизаций и выбивания электронов из катода положительными ионами и фотонами количество ионов и электронов во всем объеме газа резко (лавинообразно) возрастает. Для существования тока в газе теперь уже не нужен внешний ионизатор. Газовый разряд становится самостоятельным. Описанный процесс самоионизации газа схематически показан на рис. 208, где нейтральные молекулы изображены белыми кружками, положительные ионы - кружками со знаком плюс, электроны - черными кружками, фотоны - волнистыми линиями.

На рис. 209 представлен экспериментальный график зависимости силы тока в газе от напряженности поля или от напряжения между катодом и анодом источника поля, поскольку

где расстояние между электродами. На участке кривой ток возрастает приблизительно пропорционально напряженности поля по закону Ома). Это объясняется тем, что с увеличением напряженности возрастает скорость упорядоченного движения ионов и электронов, а следовательно, и количество электричества, проходящее за 1 с к электродам (ток). Очевидно, что возрастание тока прекратится тогда, когда напряженность поля достигнет величины, при которой все ионы и электроны, создаваемые внешним ионизатором за 1 с, будут за это же время подходить к электродам.

Процесс прониканич тока через газ, называется газовым разрядом.

Ток в газе возникающий при наличии внешнего ионизатора, называется несамостоятельным .

Пусть в трубку за некоторое время впущено, пар электронов и ионов, при увеличении напряжения м-у электродами трубки сила тока будет, увеличиваться, положительные ионы начинают двигаться к катоду, а электроны – к аноду.

Наступает такой момент, когда все частицы достигают электродов и при дальнейшем увеличении напряжения сила тока изменяться не будет, если ионизатор прекратит действие, то прекратиться и разряд, т.к. других источников ионов нет, по этой причине разряд ионов называется несамостоятельным.

Ток достигает своего насыщения.

Придальнейшем повышение напряжения, сила тока резко возрастает, если убрать внешний ионизатор, разряд будет продолжаться: ионы, необходимые для поддержания электропроводности газа, теперь создаются самим разрядом. газовый разряд который продолжается после прекращения действия внешнего ионизатора, называется самостоятельным .

Напряжение, при котором возникает самостоятельный разряд, называют напряжением пробоя .

Самостоятельный газовый разряд поддерживается за счет электронов, ускоряемых электрическим полем, они обладают кинетической энергией, которая возрастает за счет эл. поля.

Типы самостоятельного разряда:

1) тлеющий

2) дуговой(электрическая дуга) – для сварки металла.

3) коронный

4) искровой (молния)

Плазма. Виды плазмы.

Под плазмой понимают сильно ионизированный газ, в котором концентрация электронов ровна концентрации + ионов.

Чем выше тем-ра газа, тем больше ионов и электронов в плазме и тем меньше нейтральных атомов.

Виды плазмы:

1) Частично ионизированная плазма

2) полностью ионизированная плазма(все атомы распались на ионы и электроны).

3) Высокотемпературная плазма (Т>100000 К)

4) низкотемпературная плазма (T<100000 К)

Св-ва плазмы:

1) Плазма электрически-нейтральна

2) Частицы плазмы легко перемещаются под действием поля

3) Обладают хорошей электропроводимостью

4) Обладают хорошей теплопроводимостью

Практическое применение:

1) Превращение тепловой энергии газа в электрическую с помощью магнитогидродинамического преобразователя энергии (МГД). Принцип действия:

Струя высокотемпературной плазмы попадает в сильное магнитное поле (поле направленно перпендикулярно плоскости чертежа X) оно разделяется на + и – частицы, которые устремляются к различным пластинам, создовая какую-то разность потенциалов.

2) Применяют в плазматронах (плазмы генераторы), с их помощью режут и сваривают металлы.

3) Все звезды, в том числе Солнце, звездной атмосфер, галактической туманности представляют собой плазму.

Наша Земля окружена плазменной оболочкой – ионосферой, за пределами которой существуют радиационные полюса, окружающие нашу Землю, в которых также есть плазма.

Процессами в околоземной плазмы обусловлены магнитные бури, полярные сияния, также в космосе сущ-т плазменные ветры.

16.Электрический ток в полупроводниках.

Полупроводники- ве-ва, у которых с ростом t сопротивление уменьшается.

Полупроводники занимают 4 подгруппу.

Пример: Кремний- 4х валентный элемент-это означает, что во внешней оболочке атома, имеется 4 электрона, слабо связанных с ядром, каждый атом образует 4 связи с соседними, при нагревании Si, увели-ся скорость валентных е, а значит и их кинематическая энергия (Е к), скорость е становиться настолько большой, что связи не выдерживают т рвутся, е покидают свои пути и становиться свободными, в эл. поле они перемещаются м-у узлами решетки, образуя эл. ток. По мере повышения t число разорванных связей увели-ся, а значит и увели-ся число связанных е, а это ведет к уменьшению сопротивления: I=U/R.

При разрыве связи образуется вакантное место с недостающим е, его кристалле не является неизменным. Непрерывно происходит след-ий процесс: один из е обеспечивающих связь атомов, перескакивает на место образовавшийся дырки и восстанавливается здесь пароэлектрическую связь, а там, откуда перескочил е образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.

Вывод: в полупроводниках имеются носители заряда 2х типов: е и дырки (электронно- дырочный проводимость)