Строительство и ремонт своими руками

Электрическая схема драйвера светодиодного светильника. Как выбрать светодиодный драйвер. Какую микросхему выбрать

Сегодня я кратенько рассмотрю вопрос о том, какие драйверы устанавливают в LED лампы. Виды, типы, их характеристики. Сразу отмечу, что все драйверы светодиодных ламп можно разделить на два вида: электронные и на конденсаторах. О некоторых достоинствах и недостатках мы и поговорим сегодня. А по большому счету буду раскрывать более детально этот вопрос не много позднее и добавлять в данную статью. Таким образом, предполагаю, что "светодиодные драйверы для ламп" станет достаточно объемной. Тем более материала накопилось много.

Производят драйверы, рассчитанные на один или группу светодиодов. Рассчитанных на определенный ток.

Электронные драйверы для LED ламп


Драйвер для светодиодной лампы

Вообще, по хорошему, любой электронный драйвер должен иметь ключевой транзистор, дабы разгрузить микросхему управления драйвером. Чтобы исключить или по максимуму сгладить пульсацию на выходе должен стоять конденсатор. Стоимость драйверов такого типа не маленькая, в отличии от балластных, но зато они стабилизируют токи до 750 мА и выше, чего обычным «бесхребетным» не под силу. Можно. Но лучше больше 200 мА не использовать… Опять же опыт эксплуатации.

Пульсация – не один недостаток драйверов. Другим можно считать высокочастотные помехи. В случае, если ваша розетка связана с лампой (разводка квартиры), то не избежать проблем с приемом цифровым телевидением, IP и т.п. Естественно, будет проблематично поймать радио. Задался сейчас вопросом: “А Wi-Fi будет страдать?»… Надо поставить опыты…

В хороших драйверах для сглаживания пульсаций стоит установить электролиты, а для снижения ВЧ помех пойдет керамика. В идеале, когда в драйвере присутствует и тот и другой кондер. Но такое сочетание большая редкость. Особенно в китайских лампах. Есть некоторые «индивидуумы», но их очень мало. Когда-нибудь я поговорю о них.

Ну и еще одна общая информация. Для тех, кто любит «очумелые ручки». Вы всегда можете изменить выходной ток своего электронного драйвера, «балуясь» номиналом резисторов. Хотя, нужно ли? Уже выпускается огромное количество драйверов и подобрать нужный – не проблема. И не обязательно приобретать дорогущий. Китайцы давно научились штамповать вполне приличную электронику.

Перейдем к не менее распространенным так называемым драйверам – на конденсаторах. Я их всегда называю «так называемые». Почему? Это будет понятно из выводов в конце статьи.

Светодиодные драйверы для ламп на основе конденсаторов

Обратимся к любой стандартной схеме светодиодной лампы, использующей такие «драйверы»

Схема общая и в ряде случаев ее постоянно модифицируют. Особенно любят китайские производители выкидывать оттуда что-нибудь.

Часто в дешевых лампах мы можем «наблюдать» пульсацию в 100 процентов. В этом случае можно даже не заглядывать внутрь лампы, чтобы утверждать об отсутствии одного из конденсаторов. А именно второго. Т.к. первый необходим для регулировки выходного тока. Его – то уж точно никуда не денут))).

Для тех, кто желает самостоятельно собирать такие драйвера, есть формулы, которые можно найти в сети. И по ним рассчитать номинал конденсатора.

Это можно отнести к большому плюсу такого вида драйвера. Ведь мощность лампы можно подогнать простым подбором конденсатора. Минусом стоит отметить отсутствие электробезопасности. Прикасаться к включенной лампе руками запрещено. Электротравма обеспечена.

Еще одним плюсом можно отметить 100 процентный КПД, ведь потери будут только на самих LEDs и сопротивлениях.

Огромный минус – пульсация. Она берется в результате выпрямления сетевого напряжения и составляет порядка 100 Гц. Согласно ГОСТ и САНпИН пульсация допустима от 10-20 процентов и то, в зависимости от того, в каком помещении установлен источник света. Уменьшить пульсацию можно подбором номинала конденсатора №2. Но все-равно Вы не получите полного отсутствия, а только не много сгладите всплески.

Это второй и главный минус такого типа драйверов. Как говорится: то что дешево – не всегда полезно. А пульсация очень вредна для здорового организма. Да и для не здорового))).

Сравнение электронных и балластных драйверов для светодиодных ламп

Из всего выше сказанного (возможно путанно) можно сделать сравнительную характеристику между двумя типами драйверов для светодиодных ламп:

Драйверы Балластные на конденсаторах Электронные
Вероятность электротравмы Высокая. За счет отсутствия гальванической развязки с сетью. Запрещено прикосновение к элементам руками при включенной лампе Низкая
Высокие токи Не возможно получить высокие токи для свечения диодов, в результате того, что необходимы конденсаторы большого размера. Конструктивно и лампа будет больших размеров. Кроме того, увеличенные конденсаторы влекут увеличение пусковых токов, что приводит к быстрому выходу из строя выключателей Возможно получить без особых проблем
Пульсация Большая. Порядка 100 Гц. Практически невозможно избавиться из-за необходимости внедрения конденсаторов большой емкости на выходе, фильтрующих пульсацию Легко регулируется либо отсутствует
Схема Схема очень простая. Легко собирается на коленке и не требует больших познаний в радиоэлеткронике Схема сложная. С большим количеством электронных компонентов
Выходное напряжение Легко регулируется Выходной диапазон напряжения узкий
Стоимость Низкая Высокая
Регулировка тока Путем изменения емкости входного конденсатора Более сложная. Как правило только при помощи резисторов. И то не всегда. Все зависит от сложности собранной схемы

Какие светодиодные драйверы для ламп лучше, а какие хуже – решать Вам. У обоих есть как сильные так и слабые стороны. И те и другие можно использовать. Только в разных помещениях. Но для себя я ввел градацию простую. Никогда не считаю качественными лампами те, которые собраны на балластах из конденсаторов по причине пульсации. Я сторонник здорового образа жизни))) и поэтому определяю такие источники света сразу в мусор.

Видео материал на тему светодиодных драйверов для ламп

Ну и на последок, как уже повелось, предлагаю интересное видео о светодиодных драйверах. Вернее об одном, самом простом, который можно собрать на коленке самостоятельно.


Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

Можно посмотреть процесс изготовления самоделки в видео:

Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.

Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.


Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.



Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА, но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.


Шаг третий. Сборка светодиодной настольной лампы.
Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода.


Электронную плату питания и диодный мост разместил в корпусе подставки настольной лампы.

Для конструирования светодиодных светильников постоянно требуются источники питания — драйвера. При большом объеме вполне можно наладить сборку драйверов самостоятельно, но себестоимость таких драйверов получается не такой уж и низкой, а изготовление и пайка двухсторонних печатных плат с SMD-компонентами — процесс в домашних условиях довольно трудоемкий.

Я решил обойтись готовым драйвером. Нужен был недорогой драйвер без корпуса, желательно с возможностью настройки тока и диммированием.

Схему перерисовал и немного доработал

Характеристики без конденсаторов ~0.9В и 8.7% (пульсации светового потока)

Конденсатор на выходе ожидаемо уменьшат пульсации вдвое ~0.4В и 4%

А вот 10мкФ конденсатор на входе уменьшает пульсации в 9 раз ~0.1В и 1%, правда добавление этого конденсатора значительно снижает PF (коэффициент мощности)

Оба конденсатора приближают характеристики выходных пульсаций к паспортным ~ 0.05В и 0.6%

Итак пульсации побеждены при помощи двух конденсаторов из старого блока питания.

Доработка №2. Настройка выходного тока драйвера

Основное предназначение драйверов — поддерживать стабильный ток на светодиодах. Данный драйвер стабильно выдает 600мА.

Иногда ток драйвера хочется изменить. Обычно это делается подбором резистора или конденсатора в цепи обратной связи. Как обстоят дела у этих драйверов? И зачем здесь установлены три параллельных резистора малого сопротивления R4, R5, R6?

Все правильно. Ими можно задавать выходной ток. Видимо, все драйверы одинаковой мощности, но на разные токи и отличаются именно этими резисторами и выходным трансформатором, дающим разное напряжение.

Если аккуратно демонтировать резистор на 1.9Ом, получаем выходной ток 430мА, демонтировав оба резистора 300мА.

Можно пойти и обратным путем, подпаяв параллельно еще один резистор, но данный драйвер выдает напряжение до 35В и при большем токе мы получим превышение по мощности, что может привести с выходу драйвера из строя. Но 700мА вполне можно выжать.

Итак, при помощи подбора резисторов R4, R5 и R6 можно уменьшать выходной ток драйвера (или очень незначительно увеличивать) не меняя количество светодиодов в цепочке.

Доработка 3. Диммирование

На плате драйвера имеется три контакта с надписью DIMM, что наводит на мысль, что данный драйвер может управлять мощностью светодиодов. О том же говорит и даташит на микросхему, хотя типовых схем диммирования в них не приведено. Из даташита можно почерпнуть информацию, что подавая на ногу 7 микросхемы напряжение -0.3 — 6В, можно получить плавное регулирование мощности.

Подключение к контактам DIMM переменного резистора ни к чему не приводит, кроме того, нога 7 микросхемы драйвера вообще ни к чему не подключена. Значит снова доработки.

Подпаиваем резистор на 100К к ноге 7 микросхемы

Теперь подавая между землей и резистором напряжение 0-5В получаем ток 60-600мА


Чтобы уменьшить минимальный ток диммирования, необходимо уменьшить и резистор. К сожалению, в даташите про это ничего не написано, поэтому подбирать все компоненты придется опытны путем. Меня лично устроило диммирования от 60 до 600мА.

Если нужно организовать диммирование без внешнего питания, то можно взять напряжение питания драйвера ~15В (нога 2 микросхемы или резистор R7) и подать по следующей схеме.

Ну и, напоследок, подаю ШИМ с D3 ардуино на диммирующий вход.

Пишу простейший скетч, меняющий уровень ШИМ от 0 до максимуму и обратно:

#include

void setup() {
pinMode(3, OUTPUT);
Serial.begin(9600);
analogWrite(3,0);
}

void loop() {
for(int i=0; i< 255; i+=10){
analogWrite(3,i);
delay(500);
}
for(int i=255; i>=0; i-=10){
analogWrite(3,i);
delay(500);
}
}

Получаю диммирование при помощи ШИМ.

Диммирование при помощи ШИМ увеличивает выходные пульсации примерно на 10-20% по сравнению с управлением постоянным током. Максимально пульсации увеличиваются примерно вдвое при установке тока драйвера в половину от максимального.

Проверка драйвера на КЗ

Токовый драйвер должен корректно реагировать на короткое замыкание. Но лучше китайцев проверить. Не люблю я такие штуки. Под напряжением что-то втыкать. Но искусство требует жертв. Закорачиваем выход драйвера во время работы:

Драйвер нормально переносит короткие замыкания и восстанавливает свою работу. Защита от КЗ есть.

Подведем итоги

Плюсы драйвера

  • Малые габариты
  • Низкая стоимость
  • Возможность регулировки тока
  • Возможность диммирования

Минусы

  • Высокие выходные пульсации (устраняется добавлением конденсаторов)
  • Вход диммирования нужно распаивать
  • Мало нормальной документации. Неполный даташит
  • При работе обнаружился еще один минус — помехи на радио в ФМ диапазоне. Лечится установкой драйвера в алюминиевый корпус или корпус обклеенный фольгой или алюминиевым скотчем

Драйверы вполне годятся для тех, кто дружит с паяльником или для тех кто не дружит, но готов терпеть выходные пульсации 3-4%.

Полезные ссылки

Из цикла — коты это жидкость. Тимофей — литров 5-6)))

У каждого диода, в свою очередь, в описании указано падение напряжения при разных токах. Например, для красного диода 660 нм при токе 600 мА оно составит 2,5 В:

Количество диодов, которое можно подключить на драйвер, суммарным падением напряжения должно укладываться в пределы выходного напряжения драйвера. То есть на драйвер 50Вт 600 мА с выходным напряжением 60-83 В можно подключить от 24 до 33 красных диодов 660 нм. (То есть 2,5*24 = 60, 2,5*33 = 82,5).

Другой пример:
Хотим собрать биколорную лампу красный + синий. Выбрали соотношение красного к синему 3:1 и хотим рассчитать, какой драйвер нужно взять для 42 красных и 14 синих диодов. Считаем: 42*2,5 + 14*3,5 = 154 В. Значит, нам потребуется два драйвера 50 Вт 600 мА, на каждый будет приходиться 21 красных и 7 синих диодов, суммарное падение напряжения на каждом получится по 77 В, что попадает в его выходное напряжение.

Теперь несколько важных пояснений:

1) Не стоит искать драйвер мощностью более 50 Вт: они есть, но они менее эффективны, чем аналогичный набор драйверов меньшей мощности. Более того, они будут сильно греться, что потребует от Вас дополнительных расходов на более мощное охлаждение. Кроме тго, драйвера мощностью более 50Вт как правило сильно дороже, например драйвер на 100Вт может быть дороже чем 2 драйвера по 50Вт. Поэтому гнаться за ними не стоит. Да и надежнее когда цепи светодиодов разделены на секции, если вдруг что-то перегорит - то сгорит не все а только чать. Поэтому выгодно разделять на несколько драйверов, а не стремиться все повесить на один. Вывод: 50Вт - оптимальный вариант, не больше.

2) Ток у драйверов бывает разный: 300 мА, 600 мА, 750 мА - это ходовые. Других вариантов довольно много.
По большому счету, более эффективным с точки зрения КПД на 1 Вт будет использование драйвера на 300 мА, также он не будет сильно нагружать светодиоды, и они будут меньше греться и дольше прослужат. Но главный минус таких драйверов, что диоды будут работать "вполсилы", и поэтому их потребуется примерно в два раза больше, чем для аналога с 600 мА.
Драйвер с током 750 мА будет питать диоды на пределе возможностей, поэтому диоды будут очень сильно греться, и им потребуется очень мощное, хорошо продуманное охлаждение. Но даже несмотря на это, они в любом случае деградируют от перегрева раньше среднего срока "жизни" светодиодных ламп работающих например на 500-600 мА токе.
Поэтому мы рекомендуем использовать драйверы с током 600 мА. Они получаются самым оптимальным решением с точки зрения соотношения цена-эффективность-срок службы.

3) Мощность диодов указывается номинальная, то есть максимально возможная. Но на максимум они никогда не запитываются (почему - см. п.2). Реальную мощность диода рассчитать очень просто: необходимо ток используемого драйвера умножить на падение напряжения диода. Например, при подключении драйвера на 600 mA к красному диоду 660 нм мы получим реальное напряжение на диоде: 0,6(А) * 2,5(В) = 1,5 Вт.

Приобрел себе на пробу светодиоды 10 Вт 900лм теплого белого света на AliExpress. Цена в ноябре 2015года составляла 23 рубля за штуку. Заказ пришел в стандартном пакетике, проверил все исправные.


Для питания светодиодов в осветительных устройствах применяются специальные блоки - электронные драйверы, представляющие собой преобразователи стабилизирующие ток, а не напряжение на своём выходе. Но так как драйверы для них(заказывал тоже на AliExpreess) были еще в пути решил запитать от балласта от энергосберегающих ламп. У меня было несколько таких неисправных ламп. у которых сгорела нить накала в колбе. Как правило, у таких ламп преобразователь напряжения исправен, и его можно использовать в качестве импульсного блока питания или драйвера светодиода.
Разбираем люминисцентную лампу.


Для переделки я взял 20 Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 20 Вт. Для 10 Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником.
Установил перемычки в цепи розжига лампы.

На дроссель намотал 18 витков эмальпровода, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 9,7В. Подключил светодиод через амперметр, который показал проходящий через светодиод ток в 0,83А. У моего светодиода рабочий ток равен 900мА, но я уменьшил ток чтобы увеличить ресурс. Собрал диодный мост на плате навесным способом.

Схема переделки.

Светодиод установил на термопасту на металлический абажур старой настольной лампы.

Плату питания и диодный мост установил в корпус настольной лампы.

При работе около часа температура светодиода 40 градусов.

На глаз освещенность как от 100 ваттной лампы накаливания.

Планирую купить +127 Добавить в избранное Обзор понравился +121 +262