Строительство и ремонт своими руками

Квантовая оптика. Тепловое излучение. квантовая оптика Частицы или волны

КВАНТОВАЯ ОПТИКА

КВАНТОВАЯ ОПТИКА

Раздел статистической оптики, изучающий микроструктуру световых полей и оптич. явления, в к-рых видна квант. природа света. Представление о квант. структуре излучения введено нем. физиком М. Планком в 1900.

Статистич. структуру интерференц. поля впервые наблюдал С. И. Вавилов (1934), им же предложен термин «микроструктура света».

Световое - сложный физ. объект, состояние к-рого определяется бесконечным числом параметров. Это относится и к монохроматическому излучению, к-рое при классич. описании характеризуется полностью амплитудой, частотой, фазой и поляризацией. Задача полного определения светового поля не может быть решена из-за непреодолимых технич. трудностей, связанных с бесконечным числом измерений параметров поля. Дополнит. сложности в решение этой задачи вносит существенно квант. хар-р измерений, т. к. они связаны с регистрацией фотонов фотодетекторами.

Успехи лазерной физики и совершенствование техники регистрации слабых световых потоков определили развитие и задачи К. о. Долазерные источники света по своим статистич. св-вам однотипны генераторам шума, имеющего гауссовское . Состояние их полей практически полно определяется формой спектра излучения и его интенсивностью. С появлением квант. генераторов и квант. усилителей К. о. получила в своё распоряжение широкий ассортимент источников с весьма разнообразными, в т. ч. не гауссовскими, статистич. хар-ками.

Простейшая хар-ка поля - его ср. интенсивность. Более полная хар-ка- ф-ция пространственно-временного распределения интенсивности поля, определяемая из экспериментов по регистрации во времени фотонов одним детектором. Ещё более полную информацию о состоянии поля дают исследования квант. его разл. величин, к-рые удаётся частично определить из экспериментов по совместной регистрации фотонов поля неск. приёмниками, либо при исследовании многофотонных процессов в в-ве.

Центр. понятиями в К. о., определяющими состояние поля и картину его флуктуации, явл. т. н. корреляционные ф-ции или полевые корреляторы. Они определяются как квантовомеханич. средние от операторов поля (см. КВАНТОВАЯ ТЕОРИЯ ПОЛЯ). Степень сложности корреляторов определяет ранг, причём, чем он выше, тем более тонкие статистич. св-ва поля им характеризуются. В частности, эти ф-ции определяют картину совместной регистрации фотонов во времени произвольным числом детекторов. Корреляционные ф-ции играют важную роль в нелинейной оптике. Чем выше степень нелинейности оптич. процесса, тем более высокого ранга корреляторы необходимы для его описания. Особое значение в К. о. имеет понятие квантовой когерентности. Различают частичную и полную поля. Полностью когерентная волна по своему действию на системы максимально подобна классич. монохроматич. волне. Это означает, что квант. флуктуации поля когерентной минимальны. Излучение лазеров с узкой спектральной полосой близко по своим хар-кам к полностью когерентному.

Исследование корреляц. ф-ций высших порядков позволяет изучать физ. в излучающих системах (напр., в лазерах). Методы К. о. дают возможность определять детали межмол. вз-ствнй по изменению статистики фотоотсчётов при рассеянии света в среде.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

КВАНТОВАЯ ОПТИКА

Раздел оптики, изучающий статистич. свойства световых полей и квантовое проявление этих свойств в процессах взаимодействия света с веществом. Представление о квантовой структуре излучения введено М. Планком (М. Planck) в 1900. Световое поле, как и любое физ. поле, в силу своей квантовой природы является объектом статистическим, т. е. его состояние определяется в вероятностном смысле. С 60-х гг. началось интенсивное изучение статистич. распределение.) Далее, квантовый процесс спонтанного рождения фотонов является неустранимым источником существенных флуктуации полей, изучаемых К. о.; наконец, сама регистрация света фотоприёмниками - фотоотсчёты - представляет собой дискретный квантовый . шумы генераторов излучения, в среде и т. п. нелинейной оптикой; с одной стороны, в нелинейных оптич. процессах происходит изменение статистич. свойств светового поля, с другой - статистика поля влияет на протекание нелинейных процессов. корреляционными функциями, или полевыми корреляторами. Они определяются как квантово-механич. средние от операторов поля (см. также Квантовая теория поля). Простейшими характеристиками поля являются его и ср. интенсивность. Эти характеристики находят из опытов, напр., интенсивность света - по измерениям скорости фотоэмиссии электронов в ФЭУ. Теоретически эти величины описываются (без учёта поляризации поля) полевым коррелятором в к-ром - эрмитово сопряжённые составляющие оператора электрич. поля
в пространственно-временной точке x=(r,t). Оператор выражается через - оператор уничтожения (см. Вторичное квантование )фотона "k "-й моды поля U k (r):

Соответственно этому выражается через оператор рождения Знак < . . . > обозначает квантовое усреднение по состояниям поля, а если рассматривается его с веществом, то и по состояниям вещества. информация о состоянии поля содержится в корреляторе G 1,1 (x 1 , x 2). В общем случае детальное определение состояния поля требует знания корреляц. ф-ций более высоких порядков (рангов). Стандартной формой корреляторов, обусловленной её связью с регистрацией поглощения фотонов, принята нормально-упорядоченная:

в к-рой все п операторов рождения стоят левее всех га операторов уничтожения Порядок коррелятора равен сумме n+m .Практически удаётся исследовать корреляторы невысоких порядков. Чаще всего это коррелятор G 2,2 ( х 1 2 ; х 2 1), к-рый характеризует флуктуации интенсивности излучения, его находят из экспериментов по совместному счёту фотонов двумя детекторами. Подобно этому определяется коррелятор G n,n (x 1 ,. . .х п ; х п,. . .x 1) из регистрации отсчётов фотонов п приёмниками или из данных n -фотонного поглощения. G n,m с п т возможно только в нелинейных оптич. экспериментах. В стационарных измерениях условие неизменности коррелятора G n,m во времени требует выполнения закона сохранения энергии:

где w 6 частоты гармоник операторов соответственно. В частности, G 2,l находят из пространственной картины интерференции трёхволнового взаимодействия в процессе уничтожения одного и рождения двух квантов (см. Взаимодействие световых волн). Из нестационарных корреляторов особый интерес представляет G 0,1 (x ), определяющий напряжённость квантового поля. Величина |G 0,1 (x )| 2 даёт значение интенсивности поля только в спец. случаях, в частности для когерентных полей. р(п,T) - вероятность реализации точно п фотоотсчётов в интервале времени Т. Эта характеристика содержит в себе скрытую информацию о корреляторах произвольно высоких порядков. Выявление скрытой информации, в частности определение ф-ции распределения интенсивности излучения источником, составляет предмет т. н. обратной задачи счёта фотонов в К. о. Счёт фотонов -эксперимент, имеющий принципиально квантовую природу, что отчётливо проявляется, когда интенсивность I регистрируемого поля не флуктуирует. Даже в этом случае его вызывает случайную во времени последовательность фотоотсчётов с Пуассона распределением

где b - характеристика чувствительности фотодетектора, т. н. его эффективность. Значение g (x 1 , х 2) стремится к 1 по мере разнесения пространственно-временных точек х 1 и х 2 ,что соответствует статистич. независимости фотоотсчётов в них. При совмещении точек x 1 =x 2 =x отличие g (x , х )от единицы (g- 1) характеризует уровень флуктуации интенсивности излучения и проявляется в различии чисел совпадений фотоотсчётов, полученных при одновременной и независимой их регистрации двумя детекторами. Флуктуации интенсивности одномодового поля характеризуются величиной

где усреднение удобно проводить по состояниям |n > (см. Вектор состояния матрицей плотности

в к-рой Р п - вероятность реализации моды поля в состоянии с п фотонами. Для теплового излучения вероятность Р п задана Бoзе - Эйнштейна статистикой:

где ср. число фотонов в моде Это сильно флуктуирующее поле, для к-рого g= 2. Оно характеризуется положит. корреляцией g- 1>0 в одновременной регистрации двух фотонов. Такие случаи флуктуации интенсивности, когда g> 1, наз. в К. о. группировкой фотонов. g-1=0 представляют поля, находящиеся в т. н. когерентных состояниях, ук-рых Этот специально выделенный в К. о. класс полей с нефлуктуирующей интенсивностью генерируется, напр., движущимися классически электрическими зарядами. Когерентные поля наиб. просто описываются в т. н. Р (a)-представлении Глаубера (см. Квантовая когерентность). В этом представлении

где

Выражение (**) может рассматриваться как соответствующее классич. выражение для g, в к-ром Р (a) считается ф-цией распределения комплексных амплитуд a классич. поля и для к-рого всегда Р(a)>0. Последнее приводит к условию g >1, т. е. к возможности в классич. полях только группировки. Это объясняется тем, что флуктуации интенсивности классич. поля вызывают одновременно одинаковое изменение фотоотсчётов в обоих фотодетекторах.

Р (a) == d 2 (a - a 0) = d d -

двумерной d-ф-цией в комплексной плоскости a. Тепловые классич. поля характеризуются положит. ф-цией (что и описывает группировкув них). Для квантовых полей Р (a) - ф-ция вещественная, но в конечной области аргумента а она может принимать отрицат. значение, тогда она представляет т. н. квазивероятности. Статистика фотоотсчётов у полей с точно заданным числом N >1 фотонов в моде P n = d nN (d nN - Кронекера символ )является существенно неклассической. Для этого состояния g = 1 - 1/N, что соответствует отрицат. корреляции: g- 1 <0. Такие случаи наз. в К. о. антигруппировкой фотонов, к-рую можно объяснить тем, что фотона одним из детекторов уменьшает вероятность фотоотсчёта в другом. Эффект антигруппировки наблюдается и в свете, резонансно рассеянном одним атомом. В этом случае регистрируемые кванты спонтанно рождаются в среднем через определ. интервалы времени и вероятность одноврем. рождения двух квантов равна нулю, что и даёт нулевую вероятность их одноврем. регистрации. многофотонные процессы. К. о. находит всё более широкую область применения. Так, напр., в связи с проектированием оптич. системы для регистрации гравитац. волн и постановкой т. н. невозмущающих оптич. экспериментов, в к-рых уровень флуктуации, в т. ч. квантовых, сводится к минимуму, внимание исследователей привлекают такие состояния поля, наз. "сжатыми", в к-рых флуктуации интересующей величины (подобной интенсивности или фазе идеально стабилизированного лазера) могут быть в принципе сведены до нуля. Лит.: Г л а у б е р Р., Оптическая когерентность и статистика фотонов, в кн.: Квантовая оптика и квантовая радиофизика, пер. с англ. и франц., М., 1966; Клаудер Д ж., Сударшан Э., Основы квантовой оптики, пер. с англ., М.. 1970; Перина Я., Когерентность света, пер. с англ., М., 1974; Спектроскопия оптического смешения и фотонов, под ред. Г, Камминса, Э. Пайка, пер. с англ., М., 1978; К л ы ш к о Д. Н., Фотоны и , М., 1980; Кросиньяни Б., Ди Порто П., Бертолотти М., Статистические свойства рассеянного света, пер. с англ., М., 1980. С. Г . Пржибельский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "КВАНТОВАЯ ОПТИКА" в других словарях:

    Раздел оптики, изучающий статистические свойства световых полей (потоков фотонов) и квантовые проявления этих свойств в процессах взаимодействия света с веществом … Большой Энциклопедический словарь

    КВАНТОВАЯ ОПТИКА - раздел теоретической физики, изучающий микроструктуру световых полей и оптические явления, подтверждающие квантовую природу света … Большая политехническая энциклопедия

    Квантовой оптикой называют раздел оптики, занимающийся изучением явлений, в которых проявляются квантовые свойства света. К таким явлениям относятся: тепловое излучение, фотоэффект, эффект Комптона, эффект Рамана, фотохимические процессы,… … Википедия

    Раздел оптики, изучающий статистические свойства световых полей (потоков фотонов) и квантовые проявления этих свойств в процессах взаимодействия света с веществом. * * * КВАНТОВАЯ ОПТИКА КВАНТОВАЯ ОПТИКА, раздел оптики, изучающий статистические… … Энциклопедический словарь

    квантовая оптика - kvantinė optika statusas T sritis fizika atitikmenys: angl. quantum optics vok. Quantenoptik, f rus. квантовая оптика, f pranc. optique quantique, f … Fizikos terminų žodynas

    Раздел оптики, изучающий статистич. свойства световых полей (потоков фотонов) и квантовые проявления этих свойств в процессах взаимодействия света с веществом … Естествознание. Энциклопедический словарь

    Имеет следующие подразделы (список неполный): Квантовая механика Алгебраическая квантовая теория Квантовая теория поля Квантовая электродинамика Квантовая хромодинамика Квантовая термодинамика Квантовая гравитация Теория суперструн См. также… … Википедия

КВАНТОВАЯ ОПТИКА, раздел оптики, в котором для изучения свойств света и его взаимодействия с веществом используют принципы квантовой механики (корпускулярно-волновой дуализм, векторы состояния, представления Гейзенберга и Шрёдингера и т.д.).

Зарождение квантовой теории света относится к 1900 году, когда М. Плат для объяснения спектрального распределения электромагнитной энергии, излучаемой тепловым источником, постулировал поглощение и испускание её дискретными порциями. Идея дискретности легла в основу вывода формулы, носящей его имя, и послужила толчком для создания квантовой механики. Однако оставалось неясным, является ли источником дискретности вещество или сам свет. В 1905 году А. Эйнштейн опубликовал теорию фотоэффекта, в которой показал, что его можно объяснить, если свет рассматривать как поток частиц (квантов света), названных впоследствии фотонами. Фотоны имеют энергию Е =hv (h - постоянная Планка, v - частота света) и распространяются со скоростью света. Позднее Н. Бор показал, что атомы могут испускать свет дискретными порциями. Т.о., свет рассматривается и как электромагнитная волна, и как поток фотонов. Квантованное световое поле относится к статистическим объектам, и его состояние определяется в вероятностном смысле.

Создание в 1960 году лазера - принципиально нового источника излучения по сравнению с тепловым - стимулировало исследования статистических характеристик его излучения. Эти исследования связаны с измерением распределения фотонов лазерного излучения и когерентности поля. Нелазерные источники света являются, по существу, источниками случайных световых полей с гауссовой статистикой поля. Изучая статистику лазерного излучения, Р. Глаубер ввёл понятие когерентного состояния, которому хорошо соответствует излучение лазера, работающего в режиме над порогом генерации. В 1977 американский физик Дж. Кимбл впервые наблюдал так называемую антигруппировку фотонов (смотри ниже), которую можно было объяснить с помощью квантовой теории.

С конца 20 века квантовая оптика интенсивно развивается. Она тесно связана с нелинейной и атомной оптикой, квантовой теорией информации. Одним из наиболее удобных способов определения состояния светового поля является измерение корреляционных функций. Простейшая из них - полевая корреляционная функция, характеризующая связь полей в различных пространственно-временных точках. Она полностью характеризует поле теплового источника излучения, однако не позволяет отличить источники с другими статистическими свойствами от тепловых. В этом отношении важную роль играет корреляционная функция числа фотонов (интенсивностей) второго порядка g (2) (τ), содержащая сведения о распределении времён запаздывания τ испускания фотонов. С её помощью измеряют эффекты группировки и антигруппировки фотонов. Свет от источника поступает на светоделительную пластинку (рис. 1), после которой он подаётся на два фотодетектора. Регистрация фотона сопровождается появлением импульса на выходе детектора. Импульсы с детекторов поступают в устройство, которое измеряет время задержки между ними. Эксперимент повторяется много раз. Таким способом измеряют распределение времён задержки, которое связано с функцией g (2) (τ). На рисунке 2 изображена зависимость g (2) (τ) для трёх типичных источников света - теплового, лазера и резонансной флуоресценции. При τ → ∞ значения функций для теплового источника и резонансной флуоресценции приближаются к единице. Для лазерного излучения g (2) (τ)= 1 и статистика фотонов пуассоновская. Для теплового источника g (2) (0) = 2 и более вероятно обнаружить два фотона приходящими сразу друг за другом (эффект группировки фотонов). В случае резонансной флуоресценции вероятность испускания атомом сразу двух фотонов равна нулю (антигруппировка фотонов). Значение g (2) (0) = 0 обусловлено тем, что между двумя последовательными актами излучения фотонов одним атомом существует время задержки. Этот эффект объясняется полной квантовой теорией, которая с квантовой точки зрения описывает и среду, и электромагнитное поле.

С эффектом антигруппировки тесно связана субпуассоновская статистика фотонов, для которой функция распределения уже, чем пуассоновское распределение. Поэтому уровень флуктуаций в фотонных пучках с субпуассоновской статистикой меньше уровня флуктуаций когерентного излучения. В предельном случае такие неклассические поля имеют строго определённое число фотонов (так называемое фоковское состояние поля). В квантовой теории число фотонов является дискретной переменной.

Методами нелинейной оптики могут быть созданы неклассические световые поля, у которых, по сравнению с когерентными полями, уменьшен уровень квантовых флуктуаций некоторых непрерывных переменных, например квадратурных компонент или стоксовых параметров, характеризующих состояние поляризации поля. Такие поля называют сжатыми. Интерпретировать формирование сжатых полей можно на классическом языке. Выразим напряжённость электрического поля Е через квадратурные компоненты а и b: Е(t) = а(t)cosωt + b(t)sinωt, где а(t) и b(t) - случайные функции, ω = 2πν - круговая частота, t - время. При подаче такого поля на вырожденный оптический параметрический усилитель (ВОПУ) с частотой накачки 2ω одна квадратурная компонента (например, а) может усиливаться благодаря его фазовой чувствительности, а другая квадратура (b) подавляться. Вследствие этого флуктуации в квадратуре а возрастают, а в квадратуре b уменьшаются. Трансформация уровня шума в ВОПУ изображена на рисунке 3. На рисунке 3,б область флуктуаций по сравнению с входным состоянием (рис. 3, а) сжата. Подобным образом ведут себя при параметрическом усилении квантовые флуктуации вакуумного и когерентного состояний. Конечно, в этом случае квантово-механическое соотношение неопределённостей не нарушается (происходит как бы перераспределение флуктуаций между квадратурами). В параметрических процессах формируется, как правило, излучение с суперпуассоновской статистикой фотонов, для которой уровень флуктуаций превышает таковой для когерентного света.

Для регистрации сжатых полей используют балансные гомодинные детекторы, которые могут регистрировать лишь одну квадратуру. Т.о., уровень флуктуаций при фотодетектировании сжатого света может быть ниже уровня стандартного квантового предела (дробового шума), соответствующего регистрации когерентного света. В сжатом свете флуктуации могут быть подавлены до 90% по отношению к когерентному состоянию. Методами нелинейной оптики получают также поляризационно-сжатый свет, в котором подавлены флуктуации, по крайней мере, в одном из стоксовых параметров. Сжатый свет представляет интерес для прецизионных оптико-физических экспериментов, в частности для регистрации гравитационных волн.

С квантовой точки зрения рассмотренный параметрический процесс представляет собой процесс распада фотона накачки с частотой 2ω на два фотона с частотой ω. Иначе говоря, фотоны в сжатом свете создаются пáрами (бифотоны), и функция их распределения радикально отличается от пуассоновской (имеется только чётное число фотонов). Это другое необычное свойство сжатого света на языке дискретных переменных.

Если фотоны накачки в параметрическом процессе распадаются на два фотона, которые различаются частотами и/или поляризациями, то такие фотоны коррелированы (связаны) между собой. Обозначим частоты родившихся фотонов как ω 1 и ω 2 , и пусть фотоны имеют соответственно вертикальную (V) и горизонтальную (Н) поляризации. Состояние поля в этом случае на квантовом языке записывается в виде |ψ) = |V) 1 |Н) 2 . Оказывается, что при определённой ориентации нелинейно-оптического кристалла, в котором наблюдается параметрический процесс, фотоны той же частоты, распространяющиеся в том же направлении, могут рождаться с ортогональными поляризациями. В результате состояние поля принимает вид:

(*)

(Появление коэффициента перед скобкой связано с условием нормировки.)

Состояние фотонов, описываемое соотношением (*), называют перепутанным; это означает, что если фотон частоты ω 1 поляризован вертикально, то фотон частоты ω 2 - горизонтально, и наоборот. Важное свойство перепутанного состояния (*) заключается в том, что измерение состояния поляризации одного фотона проектирует состояние фотона другой частоты в ортогональное. Состояния типа (*) называют также парами Эйнштейна - Подольского - Розена и перепутанными состояниями Белла. В перепутанном состоянии могут находиться квантовые состояния атомных систем, а также состояния атомов и фотонов. С применением фотонов в перепутанных состояниях проведены эксперименты по проверке неравенства Белла, квантовая телепортация и квантовое плотное кодирование.

На основе параметрических оптических взаимодействий, а также эффекта кросс-взаимодействий осуществлены квантовые неразрушающие измерения соответственно квадратурных компонент и числа фотонов. Применение методов квантовой оптики при обработке оптических изображений позволяет улучшить их запись, хранение и считывание (смотри Квантовая обработка изображений).

Квантовые флуктуации электромагнитного поля в вакуумном состоянии могут проявляться своеобразно: они приводят к возникновению силы притяжения между проводящими незаряженными пластинами (смотри Казимира эффект).

К квантовой оптике относят и теорию флуктуаций лазерного излучения. Её последовательная разработка базируется на квантовой теории, которая даёт корректные результаты для статистики фотонов и ширины линии лазерного излучения.

Квантовая оптика занимается также исследованиями взаимодействия атомов со световым полем, воздействия света на двух- и трёхуровневые атомы. При этом обнаружен ряд интересных и неожиданных эффектов, связанных с атомной когерентностью: квантовые биения (смотри Интерференция состояний), Ханле эффект, фотонное эхо и др.

В квантовой оптике изучают также охлаждение атомов при взаимодействии со светом и получение бозе-эйнштейновского конденсата, а также механическое воздействие света на атомы с целью их захвата и управления.

Лит.: Клышко Д. Н. Неклассический свет // Успехи физических наук. 1996. Т. 166. Вып. 6; Баргатин И. В., Гришанин Б. А., Задков В. Н. Запутанные квантовые состояния атомных систем // Там же. 2001. Т. 171. Вып. 6; Физика квантовой информации / Под редакцией Д. Боумейстера и др. М., 2002; Скалли М. О., Зубайри М. С. Квантовая оптика. М., 2003; Шляйх В. П. Квантовая оптика в фазовом пространстве. М., 2005.

Определение 1

Квантовая оптика представляет собой раздел оптики, главной задачей которого является изучение явлений, в которых могут проявляться квантовые свойства света.

Такими явлениями могут быть:

  • фотоэффект;
  • тепловое излучение;
  • эффект Рамана;
  • эффект Комптона;
  • вынужденное излучение и др.

Основы квантовой оптики

В отличие от классической оптики, квантовая оптика представляет более общую теорию. Главная проблема, которую она затрагивает, - описать взаимодействие света с веществом, учитывая при этом квантовую природу объектов. Также квантовая оптика занимается описанием процесса распространения света в особых (специфических условиях).

Более точное решение таких задач требует описания как вещества (включая и среду распространения), так и света исключительно с позиции существования квантов. В то же время, зачастую ученые при описании упрощают задачу, когда один из компонентов системы (например, вещество) описывают в формате классического объекта.

Часто при расчетах, например, квантуется только состояние активной среды, а резонатор при этом считается классическим. Однако, в случае, если его длина окажется на порядок выше длины волны, считаться классическим он уже не может. Поведение возбужденного атома, который поместили в такой резонатор, будет более сложным.

Задачи квантовой оптики направлены на исследование корпускулярных свойств света (то есть его фотонов и частиц-корпускул). Согласно предложенной в 1901 г. гипотезе М. Планка о свойствах света, поглощается и излучается он только отдельными порциями (фотонами, квантами). Квант представляет материальную частицу с некоторой массой $m_ф$, энергией $E$ и импульсом $p_ф$. Тогда записывается формула:

Где $h$ представляет постоянную Планка.

$v=\frac{c}{\lambda}$

Где $\lambda$- это частота света

$с$ будет скоростью света в вакууме.

К главным оптическим явлениям, объясняемым за счет квантовой теории, относятся давление света и фотоэффект.

Фотоэффект и давление света в квантовой оптике

Определение 2

Фотоэффект это такое явление взаимодействий фотонов света и вещества, при котором энергия излучения будет передана электронам вещества. Существуют такие разновидности фотоэффекта, как внутренний, внешний и вентильный.

Внешний фотоэффект характеризуется выходом электронов из металла в момент его облучения светом (при определенной частоте). Квантовая теория фотоэффекта утверждает, что каждый акт поглощения электроном фотона осуществляется независимо от других.

Повышение интенсивности излучения сопровождается увеличением количества падающих и поглощенных фотонов. Когда энергия поглощается веществом частоты $ν$, каждый из электронов оказывается способным к поглощению только одного фотона, забирая при этом у него энергию.

Эйнштейн, применив закон сохранения энергии, предложил свое уравнение для внешнего фотоэффекта (выражение закона сохранения энергии):

$hv=A_{вых}+\frac{mv^2}{2}$

$A_{вых}$ - это работа выхода электрона из металла.

Кинетическая энергия вылетевшего электрона получается по формуле:

$E_k=\frac{mv^2}{2}$

Из уравнения Эйнштейна получается, что если $Е_к=0$, то возможно получить ту самую минимальную частоту (красную границу фотоэффекта), при которой он будет возможен:

$v_0 = \frac {A_{вых}} h$

Давление света объясняется тем фактом, что, как частицы, фотоны обладают определенным импульсом, который передают телу в процессе поглощения и отражения:

Такое явление, как давление света, объясняет также и волновая теория, по которой (если ссылаться на гипотезу де Бройля), любой частице присущи еще и волновыми свойствами. Связь импульса $Р$ и длины волны $\lambda$ показывает уравнение:

$P=\frac{h}{\lambda}$

Эффект Комптона

Замечание 1

Эффект Комптона характеризуется некогерентным рассеянием фотонов на свободных электронах. Само понятие некогерентность означает не интерферированность фотонов до рассеяния и после него. При эффекте изменяется частота фотонов, при этом после рассеяния электроны получают часть энергии.

Эффект Комптона представляет экспериментальное доказательство проявления корпускулярных свойств света в качестве потока частиц (фотонов). Явления эффекта Комптона и фотоэффекта выступают важным доказательством квантовых представлений о свете. В то же время, такие явления, как дифракция, интерференция, поляризация света служат подтверждением волновой природы света.

Эффект Комптона представляет одно из доказательств корпускулярно-волнового дуализма микрочастиц. Закон сохранения энергии записывается следующим образом:

$m_ec^2+\frac{hc}{\lambda}=\frac{hc}{\lambda}+\frac{m_ec^2}{scrt{1-\frac{v^2}{c^2}}}$

Обратный эффект Комптона представляет увеличение частоты света при рассеянии на релятивистских электронах с более высокой, чем фотонная, энергией. При таком взаимодействии энергия передается фотону от электрона. Энергию рассеянных фотонов определяет выражение: выражением:

$e_1=\frac{4}{3}e_0\frac{K}{m_ec^2}$

Где $e_1$ и $e_0$ - энергия рассеянного фотона и падающего соответственно, а $k$ -кинетическая энергия электрона.

Введение

1. Возникновение учения о квантах

Фотоэффект и его законы

1 Законы фотоэффекта

3. Закон Кирхгофа

4. Законы Стефана-Больцмана и смещения Вина

Формулы Рэлея - Джинса и Планка

Уравнение Эйнштейна для фотоэффекта

Фотон, его энергия и импульс

Применение фотоэффекта в технике

Давление света. Опыты П.Н.Лебедева

Химическое действие света и его применение

Корпускулярно-волновой дуализм

Заключение

Список литературы

Введение

Оптика - раздел физики, в котором изучается природа оптического излучения (света), его распространение и явления, наблюдаемые при взаимодействии света и вещества. По традиции оптику принято подразделять на геометрическую, физическую и физиологическую. Мы рассмотрим квантовую оптику.

Квантовой оптикой называют раздел оптики, занимающийся изучением явлений, в которых проявляются квантовые свойства света. К таким явлениям относятся: тепловое излучение, фотоэффект, эффект Комптона, эффект Рамана, фотохимические процессы, вынужденное излучение (и, соответственно, физика лазеров) и др. Квантовая оптика является более общей теорией, чем классическая оптика. Основная проблема, затрагиваемая квантовой оптикой - описание взаимодействия света с веществом с учётом квантовой природы объектов, а также описания распространения света в специфических условиях. Для того чтобы точно решить эти задачи требуется описывать и вещество (среду распространения, включая вакуум) и свет исключительно с квантовых позиций, однако часто прибегают к упрощениям: одну из компонент системы (свет или вещество) описывают как классический объект. Например часто при расчётах связанных с лазерными средами квантуют только состояние активной среды, а резонатор считают классическим, однако если длина резонатора будет порядка длины волны, то его уже нельзя считать классическим, и поведение атома в возбуждённом состоянии помещённого в такой резонатор будет гораздо более сложным.

1. Возникновение учения о квантах

Теоретические исследования Дж. Максвелла показали, что свет есть электромагнитные волны определенного диапазона. Теория Максвелла получила экспериментальное подтверждение в опытах Г. Герца. Из теории Максвелла следовало, что свет, падая на любое тело, оказывает на него давление. Это давление удалось обнаружить П. Н. Лебедеву. Опыты Лебедева подтвердили электромагнитную теорию света. Согласно работам Максвелла, показатель преломления вещества определяется формулой n =εμ −−√, т.е. связан с электрическими и магнитными свойствами этого вещества (ε и μ - соответственно относительные диэлектрическая и магнитная проницаемости вещества). Но такое явление, как дисперсия (зависимость показателя преломления от длины световой волны), теория Максвелла объяснить не смогла. Это было сделано Х.Лоренцем, создавшим электронную теорию взаимодействия света с веществом. Лоренц предположил, что электроны под действием электрического поля электромагнитной волны совершают вынужденные колебания с частотой v, которая равна частоте электромагнитной волны, а диэлектрическая проницаемость вещества зависит от частоты изменений электромагнитного поля, следовательно, и n =f (v ). Однако при изучении спектра испускания абсолютно черного тела, т.е. тела, которое поглощает все падающие на него излучения любой частоты, физика не смогла в рамках электромагнитной теории объяснить распределение энергии по длинам волн. Расхождение между теоретической (пунктирная) и экспериментальной (сплошная) кривыми распределения плотности мощности излучения в спектре абсолютно черного тела (рис. 19.1), т.е. различие между теорией и опытом, было так значительно, что его назвали "ультрафиолетовой катастрофой" Электромагнитная теория не могла также объяснить возникновение линейчатых спектров газов и законы фотоэффекта.

Рис. 1.1

Новая теория света была выдвинута М. Планком в 1900 г. Согласно гипотезе М. Планка, электроны атомов излучают свет не непрерывно, а отдельными порциями - квантами. Энергия кванта W пропорциональна частоте колебаний ν :

W =,

где h - коэффициент пропорциональности, называемый постоянной Планка:

h =6,6210−34 Джс

Так как излучение испускается порциями, то энергия атома или молекулы (осциллятора) может принимать лишь определенный дискретный ряд значений, кратных целому числу электронных порций ω , т.е. быть равной ,2,3 и т.д. Не существует колебаний, энергия которых имеет промежуточное значение между двумя последовательными целыми числами, кратными . Это означает, что на атомно-молекулярном уровне колебания происходят не с любыми значениями амплитуд. Допустимые значения амплитуд определяются частотой колебаний.

Используя это предположение и статистические методы, М. Планк сумел получить формулу распределения энергии в спектре излучения, соответствующую экспериментальным данным (см. рис. 1.1).

Квантовые представления о свете, введенные в науку Планком, развил далее А. Эйнштейн. Он пришел к выводу, что свет не только излучается, но и распространяется в пространстве, и поглощается веществом в виде квантов.

Квантовая теория света помогла объяснить ряд явлений, наблюдаемых при взаимодействии света с веществом.

2. Фотоэффект и его законы

Фотоэффект возникает при взаимодействии вещества с поглощаемым электромагнитным излучением.

Различают внешний и внутренний фотоэффект.

Внешним фотоэффектом называется явление вырывания электронов из вещества под действием падающего на него света.

Внутренним фотоэффектом называется явление увеличения концентрации носителей заряда в веществе, а следовательно, и увеличения электропроводности вещества под действием света. Частным случаем внутреннего фотоэффекта является вентильный фотоэффект - явление возникновения под действием света электродвижущей силы в контакте двух различных полупроводников или полупроводника и металла.

Внешний фотоэффект был открыт в 1887 г. Г. Герцем, а исследован детально в 1888-1890 гг. А. Г. Столетовым. В опытах с электромагнитными волнами Г. Герц заметил, что проскакивание искры между цинковыми шариками разрядника происходит при меньшей разности потенциалов, если один из них осветить ультрафиолетовыми лучами. При исследовании этого явления Столетовым использовался плоский конденсатор, одна из пластин которого (цинковая) была сплошной, а вторая - выполнена в виде металлической сетки (рис. 1.2). Сплошная пластина соединялась с отрицательным полюсом источника тока, а сетчатая - с положительным. Внутренняя поверхность отрицательно заряженной пластины конденсатора освещалась светом от электрической дуги, в спектральный состав которой входят ультрафиолетовые лучи. Пока конденсатор не освещался, тока в цепи не было. При освещении цинковой пластины К ультрафиолетовыми лучами гальванометр G фиксировал наличие тока в цепи. В том случае, если катодом становилась сетка А, тока в цепи не было. Следовательно, цинковая пластина под действием света испускала отрицательно заряженные частицы. К моменту обнаружения фотоэффекта еще не было ничего известно об электронах, открытых Дж. Томсоном только 10 лет спустя, в 1897 г. После открытия электрона Ф. Ленардом было доказано, что вылетающими под действием света отрицательно заряженными частицами являются электроны, названные фотоэлектронами.

Рис. 1.2

Столетов проводил опыты с катодами из разных металлов на установке, схема которой показана на рисунке 1.3.

Рис. 1.3

В стеклянный баллон, из которого выкачан воздух, впаивались два электрода. Внутрь баллона через кварцевое "окошко", прозрачное для ультрафиолетового излучения, попадает свет на катод К. Подаваемое на электроды напряжение можно изменять с помощью потенциометра и измерять вольтметром V. Под действием света катод испускал электроны, которые замыкали цепь между электродами, и амперметр фиксировал наличие тока в цепи. Измерив ток и напряжение, можно построить график зависимости силы фототока от напряжения между электродами I =I (U ) (рис. 1.4). Из графика следует, что:

При отсутствии напряжения между электродами фототок отличен от нуля, что можно объяснить наличием у фотоэлектронов при вылете кинетической энергии.

При некотором значении напряжения между электродами UH сила фототока перестает зависеть от напряжения, т.е. достигает насыщения IH .

Рис. 1.4

Сила фототока насыщения IH =qmaxt , где qmax - максимальный заряд, переносимый фотоэлектронами. Он равен qmax =net , где n - число фотоэлектронов, вылетающих с поверхности освещаемого металла за 1 с, e - заряд электрона. Следовательно, при фототоке насыщения все электроны, покинувшие за 1 с поверхность металла, за это же время попадают на анод. Поэтому по силе фототока насыщения можно судить о числе фотоэлектронов, вылетающих с катода в единицу времени.

Если катод соединить с положительным полюсом источника тока, а анод - с отрицательным, то в электростатическом поле между электродами фотоэлектроны будут тормозиться, а сила фототока уменьшаться при увеличении значения этого отрицательного напряжения. При некотором значении отрицательного напряжения U 3 (его называют задерживающим напряжением) фототок прекращается.

Согласно теореме о кинетической энергии, работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:

A 3=−eU 3;ΔWk =2max 2,

eU 3=2max 2.

Это выражение получено при условии, что скорость υ c , где с - скорость света.

Следовательно, зная U 3, можно найти максимальную кинетическую энергию фотоэлектронов.

На рисунке 1.5, а приведены графики зависимости I ф (U) для различных световых потоков, падающих на фотокатод при постоянной частоте света. На рисунке 1.5, б приведены графики зависимости I ф (U) для постоянного светового потока и различных частот падающего на катод света.

Рис. 1.5

Анализ графиков на рисунке 1.5, а показывает, что сила фототока насыщения увеличивается с увеличением интенсивности падающего света. Если по этим данным построить график зависимости силы тока насыщения от интенсивности света, то получим прямую, которая проходит через начало координат (рис. 1.5, в). Следовательно, сила фотона насыщения пропорциональна интенсивности света, падающего на катод

If I .

Как следует из графиков на рисунке 1.5, б уменьшении частоты падающего света, величина задерживающего напряжения увеличивается с увеличением частоты падающего света. При U 3 уменьшается, и при некоторой частоте ν 0 задерживающее напряжение U 30=0. При ν <ν 0 фотоэффект не наблюдается. Минимальная частота ν 0(максимальная длина волны λ 0) падающего света, при которой еще возможен фотоэффект, называется красной границей фотоэффекта. На основании данных графика 1.5,б можно построить график зависимости U 3(ν ) (рис. 1.5, г ).

На основании этих экспериментальных данных были сформулированы законы фотоэффекта.

1 Законы фотоэффекта

1. Число фотоэлектронов, вырываемых за 1с. с поверхности катода, пропорционально интенсивности света, падающего на это вещество.

2. Кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а зависит линейно от его частоты.

3. Красная граница фотоэффекта зависит только от рода вещества катода.

4. Фотоэффект практически безинерционен, так как с момента облучения металла светом до вылета электронов проходит время ≈10−9 с.

3. Закон Кирхгофа

Кирхгоф, опираясь на второй закон термодинамики и анализируя условия равновесного излучения в изолированной системе тел, установил количественную связь между спектральной плотностью энергетической светимости и спектральной поглощательной способностью тел. Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры (закон Кирхгофа):

Для черного тела , поэтому из закона Кирхгофа вытекает, что R ,T для черного тела равна r ,T . Таким образом, универсальная функцияКирхгофа r ,T есть не что иное, как спектральная плотность энергетической светимости черного тела. Следовательно, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральной поглощательной способности равно спектральной плотности энергетической светимости черного тела при той же температуре и частоте.

Используя закон Кирхгофа, выражение для энергетической светимости тела (3.2) можно записать в виде

Для серого тела

(3.2)

Энергетически светимость черного тела (зависит только от температуры).

Закон Кирхгофа описывает только тепловое излучение, являясь настолько характерным для него, что может служить надежным критерием для определения природы излучения. Излучение, которое закону Кирхгофа не подчиняется, не является тепловым.

4. Законы Стефана-Больцмана и смещения Вина

Из закона Кирхгофа (см. (4.1)) следует, что спектральная плотность энергетическое светимости черного тела является универсальное функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения. Австрийский физик И. Стефан (1835-1893), анализируя экспериментальные данные (1879), и Л. Больцман, применяя термодинамический метод (1884), решили эту задачу лишь частично, установив зависимость энергетической светимости R e от температуры. Согласно закону Стефана - Больцмана,

т.е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры;  - постоянная Стефана - Больцмана: ее экспериментальное значение равно 5,6710-8 Вт/(м2  К4). Закон Стефана - Больцмана, определяя зависимость R е от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции r ,T от длины волны при различных температурах (рис. 287) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости r ,T от и осью абсцисс, пропорциональна энергетической светимости R e черного тела и, следовательно, по закону Стефана - Больцмана, четвертой степени температуры.

Немецкий физик В. Вин (1864-1928), опираясь на законы термо- и электродинамики, установил зависимость длины волны max, соответствующей максимуму функции r ,T , от температуры Т. Согласно закону смещения Вина,

(199.2)

т. е. длина волны max, соответствующая максимальному значению спектральной плотности энергетической светимости r ,T черного тела, обратно пропорциональна его термодинамической температуре, b - постоянная Вина; ее экспериментальное значение равно 2,910-3 мК. Выражение (199.2) потому называют законом смещения Вина, что оно показывает смещение положения максимума функции r ,T по мере возрастания температуры в область коротких длин волн. Закон Вина объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла).

5. Формулы Рэлея - Джинса и Планка

Из рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задача о нахождении универсальной функции Кирхгофа r ,T не дал желаемых результатов. Следующая строгая попытка теоретического вывода зависимости r ,T принадлежит английским ученым Д. Рэлею и Д. Джинсу (1877-1946), которые применили к тепловому излучению методы статистической физики, воспользовавшись классическим законом равномерного распределения энергии по степеням свободы.

Формула Рэлея - Джинса для спектральной плотности энергетической светимости черного тела имеет вид

(200.1)

где =kT - средняя энергия осциллятора с собственной частотой . Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы, поэтому средняя энергия каждой колебательной степени свободы =kT .

Как показал опыт, выражение (200.1) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея - Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефана - Больцмана (см. (199.1)) из формулы Рэлея - Джинса приводит к абсурду. Действительно, вычисленная с использованием (200.1) энергетическая светимость черного тела (см. (198.3))

в то время как по закону Стефана - Больцмана R е пропорциональна четвертой степени температуры. Этот результат получил название "ультрафиолетовой катастрофы". Таким образом, в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.

В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина), полученная им из общих теоретических соображений:

где r ,T - спектральная плотность энергетической светимости черного тела, С и А - постоянные величины. В современных обозначениях с использованием постоянной Планка, которая в то время еще не была известна, закон излучения Вина может быть записан в виде

Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями - квантами, причем энергия кванта пропорциональна частоте колебания (см. (170.3)):

(200.2)

где h = 6,62510-34 Джс - постоянная Планка. Так как излучение испускается порциями, то энергия осциллятора может принимать лишь определенныедискретные значения, кратные целому числу элементарных порций энергии 0:

В данном случае среднюю энергию  осциллятора нельзя принимать равной kT. В приближении, что распределение осцилляторов по возможным дискретным состояниям подчиняется распределению Больцмана, средняя энергия осциллятора

а спектральная плотность энергетической светимости черного тела

Таким образом, Планк вывел для универсальной функции Кирхгофа формулу

(200.3)

которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

В области малых частот, т. е. при h <<kT (энергия кванта очень мала по сравнению с энергией теплового движения kT ), формула Планка (200.3) совпадает с формулой Рэлея - Джинса (200.1). Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами:

Подставляя последнее выражение в формулу Планка (200.3), найдем, что

т. е. получили формулу Рэлея - Джинса (200.1).

Из формулы Планка можно получить закон Стефана - Больцмана. Согласно (198.3) и (200.3),

Введем безразмерную переменную x =h /(kt ); dx =h d/(kT ); d=kT dx/h. Формула для R e преобразуется к виду

(200.4)

где так как Таким образом, действительно формула Планка позволяет получить закон Стефана - Больцмана (ср. формулы (199.1) и (200.4)). Кроме того, подстановка числовых значений k, с и h дает для постоянной Стефана - Больцмана значение, хорошо согласующееся с экспериментальными данными. Закон смещения Вина получим с помощью формул (197.1) и (200.3):

Откуда

Значение max, при котором функция достигает максимума, найдем, приравняв нулю эту производную. Тогда, введя x=hc/ (kT max), получим уравнение

Решение этого трансцендентного уравнения методом последовательных приближений дает x =4,965. Следовательно, hc/ (kT max)=4,965, откуда

т. е. получили закон смещения Вина (см. (199.2)).

Из формулы Планка, зная универсальные постоянные h, k и с, можно вычислить постоянные Стефана - Больцмана и Вина b. С другой стороны, зная экспериментальные значения и b, можно вычислить значения h и k (именно так и было впервые найдено числовое значение постоянной Планка).

Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка.

6. Уравнение Эйнштейна для фотоэффекта

Попытаемся объяснить экспериментальные законы фотоэффекта, используя электромагнитную теорию Максвелла. Электромагнитная волна заставляет электроны совершать электромагнитные колебания. При постоянной амплитуде вектора напряженности электрического поля количество энергии, полученной в этом процессе электроном, пропорционально частоте волны и времени "раскачивания". В этом случае энергию, равную работе выхода, электрон должен получить при любой частоте волны, но это противоречит третьему экспериментальному закону фотоэффекта. При увеличении частоты электромагнитной волны больше энергии за единицу времени передается электронам, и фотоэлектроны должны вылетать в большем количестве, а это противоречит первому экспериментальному закону. Таким образом, эти факты объяснить в рамках электромагнитной теории Максвелла было невозможно.

В 1905 г. для объяснения явления фотоэффекта А. Эйнштейн использовал квантовые представления о свете, введенные в 1900 г. Планком, и применил их к поглощению света веществом. Монохроматическое световое излучение, падающее на металл, состоит из фотонов. Фотон - это элементарная частица, обладающая энергией W 0=.Электроны поверхностного слоя металла поглощают энергию этих фотонов, при этом один электрон поглощает целиком энергию одного или нескольких фотонов.

Если энергия фотона W 0 равна или превышает работу выхода, то электрон вылетает из металла. При этом часть энергии фотона тратится на совершение работы выхода А в , а остальная часть переходит в кинетическую энергию фотоэлектрона:

W 0=AB +2max 2,

=AB +2max 2 - уравнение Эйнштейна для фотоэффекта.

Оно представляет собой закон сохранения энергии в применении к фотоэффекту. Это уравнение записано для однофотонного фотоэффекта, когда речь идет о вырывании электрона, не связанного с атомом (молекулой).

На основе квантовых представлений о свете можно объяснить законы фотоэффекта.

Известно, что интенсивность света I =WSt , где W - энергия падающего света, S - площадь поверхности, на которую падает свет, t - время. Согласно квантовой теории, эта энергия переносится фотонами. Следовательно, W = N f , где

Характеристики теплового излучения:

Свечение тел,т.е излучение телами электромагнитных волн может осуществляться за счет различных механизмов.

Тепловое излучение – это испускание электромагнитных волн за счет теплового движения молекул и атомов. При тепловом движении атомы сталкиваясь друг с другом, передают энергию при этом переходят в возбужденное состояние а при переходе в основное состояние излучают электромагнитную волну.

Тепловое излучение наблюдается при всех температурах отличных от 0 гр. Кельвина, при низких температурах излучаются длинные инфракрасные волны, а при высоких волны видимого диапазона и УФ волны. Все остальные виды излучения называются люминесценцией.

Поместим тело в оболочку с идеальной отражающей поверхностью и откачаем воздух из оболочки. (рис. 1). Излучения выходящие из тела отражаются от стен оболочки и снова поглощаются телом, т.е между телом и излучением происходит постоянный обмен энергией. В равновесном состоянии кол-во энергии излученным телом с единицей объема в ед. времени равно энергии поглощенной телом. Если равновесие нарушено то возникают процессы восстанавливающие его. Например: если тело начинает излучать энергии больше чем поглощать то внутренняя энергия и температура тела уменьшаются, а значит оно излучает меньше и уменьшение температуры тела происходит до тех пор пока кол-во излученной энергии не станет равно кол-ву полученной. Только тепловое излучение является равновесным.

Энергетическая светимость - , гдепоказывает то от чего зависит (- температура).

Энергетическая светимость это энергия излучаемая с ед. площади в ед. времени.
. Излучение может быть различно по спектральному анализу, поэтому
- спектральная плотность энергетической светимости:
это энергия излучаемая в интервале частот

это энергия излучаемая в интервале длин волн
с единицы площади в единицу времени.

Тогда
;
- используется в теоретических выводах, а
- экспериментальная зависимость.
соответствует
, поэтому
тогда

, т.к
, то
. Знак “-” показывает что если частота увеличивается то длина волны уменьшается. Поэтому “-” отбрасываем при подстановке
.

- спектральная поглощательная способность – это энергия поглощаемая телом. Она показывает какая доля энергии падающего излучения данной частоты (или длины волны) поглощается поверхностью.
.

Абсолютно черное тело – это тело которое поглощает все падающее на него излучение при любой частоте и температуре.
. Серое тело это тело у которого спектральная поглощательная способность меньше 1, но является одинаковой для всех частот
. Для всех остальных тел
, зависит от частоты и температуры.

и
зависит от: 1) материала тела 2) частоты или длины волны 3) от состояния поверхности от температуры.

Закон Кирхгофа.

Между спектральной плотностью энергетической светимости (
) и спектральной поглощательной способностью (
) для любого тела существует связь.

Поместим в оболочку несколько разных тел при разных температурах, откачали воздух и оболочку поддерживаем при постоянной температуре Т. Обмен энергии между телами и телами и оболочкой будут происходить за счет излучения. Через некоторое время система перейдет в равновесное состояние, т.е температура всех тел равняется температуре оболочки, но тела разные поэтому если одно тело излучает в ед. времени больше энергии то и поглощать оно должно больше чем другое для того чтобы температура тел была одинакова, значит
- относится к разным телам.

Закон Кирхгофа: отношение спектральной плотности энергетической светимости и спектральной поглощательной способности для всех тел является одной и той же функцией частоты и температуры - это функция Кирхгофа. Физический смысл функции: для абсолютно черного тела
поэтому из закона Кирхгофа следует что
для абсолютно черного тела, т.е функция Кирхгофа это спектральная плотность энергетической светимости абсолютно черного тела. Энергетическая светимость черного тела обозначается:
, поэтому
поскольку ф-ция Кирхгофа является универсальной ф-цией для всех тел то основной задачей является тепловое излучение, экспериментальное определение вида ф-ции Кирхгофа и определение теоретических моделей, описывающих поведение этих ф-ции.

В природе абсолютно черных тел нет, близкие к ним сажа, бархат и т.д. Можно получить модель черного тела экспериментально, для этого берем оболочку с малым отверстием, свет попадает в нее и многократно отражается и поглощается при каждом отражении от стен, поэтому свет либо не выходит, либо очень малое кол-во, Т.е такое устройство ведет себя в отношении поглощения как абсолютно черное тело а по закону Кирхгофа оно и излучает как черное тело, т.е экспериментально нагревая или поддерживая оболочку при некоторой температуре, мы можем наблюдать излучение, выходящее из оболочки. С помощью дифракционной решетки разлагаем излучение в спектр и, определяя интенсивность, и излучение в каждой области спектра была определена экспериментально зависимость
(гр. 1). Особенности: 1) Спектр непрерывен, т.е наблюдаются все возможные длины волн. 2) Кривая проходит через максимум, т.е энергия распределяется неравномерно. 3) С повышением температуры максимум смещается в сторону более коротких длин волн.

Поясним примерами модель черного тела, т.е если снаружи осветить оболочку то отверстие кажется черным на фоне светящихся стен. Даже если стены сделать черными то отверстие всеравно темнее. Пусть поверхность белого фарфора подогреем и на фоне слабо светящихся стенок будет явно выделяться отверстие.

Закон Стефана-Больцмана

Проведя ряд экспериментов с различными телами определим что энергетическая светимость любого тела пропорциональна
. Больцман получил что энергетическая светимость черного тела пропорциональна
и записал.
- ф-ла Стефана-Больцмана.

постоянная Больцмана.
.

Закон Вина.

В1893 Вин получил -
- закон Вина.
;
;
;, то
. Подставляем:
;


;
.
, тогда
,
- ф-ция от
, т.е
- решение этого уравнения относительно
будет некоторое число при
;
из эксперимента определили что
- постоянная Вина.

Закон смещения Вина.

формулировка: это длина волны соответствующая максимуму спектральной плотности энергетической светимости абсолютно черного тела обратно пропорциональна температуре.

Формула Релея -Джинса.

Определения: Поток энергии – это энергия переносимая через площадку в единицу времени.
. Плотность потока энергии – это энергия переносимая через единичную площадку в единицу времени
. Объемная плотность энергии это энергия единицы объема
. Если волна распространяется в одном направлении то через площадку
за время
переносится энергия, заключенная в объеме цилиндра равная
(рис. 2) тогда

. Рассмотрим тепловое излучение в полости с абсолютно черными стенками, тогда 1) всё излучение попадающее на стенки поглощается. 2) Через каждую точку внутри полости в любом направлении переносится плотность потока энергии
(рис. 3). Релей и Джинс рассмотрели тепловое излучение в полости как суперпозиции стоячих волн. Можно показать что бесконечно малая
излучает внутрь полости в полусферу поток излучения
.
.

Энергетическая светимость черного тела - это энергия излученная с единицы площади в единицу времени, значит поток излучения энергии равен:
,
; Приравняли

;
- это объемная плотность энергии приходящаяся на интервал частот
. Релей и Джинс использовали термодинамический закон о равномерном распределений энергии по степеням свободы. Стоячая волна обладает степенями свободы и на каждую колеблющуюся степень свободы приходится энергия
. Число стоячих волн равно числу стоячих волн в полости. Можно показать что число стоячих волн приходящихся на единицу объема и на интервал частот
равно
здесь учтено что в одном направлении может распространяться 2 волны со взаимно-перпендикулярной ориентацией
.

Если энергию одной волны умножить на число стоячих волн единицы объема полости приходящегося на интервал частот
получится объемная плотность энергии приходящаяся на интервал частоты
.
. Таким образом
отсюда найдем
для этого
и
. Подставим
. Подставим
в
, тогда
- формула Релея-Джинса. Формула хорошо описывает экспериментальные данные в области длинных волн.

(гр. 2)
;
а эксперимент показывает что
. По формуле Релея-Джинса тело только излучает и тепловое взаимодействие между телом и излучением не наступает.

Формула Планка.

Планк так же как Релей-Джинс рассмотрел тепловое излучение в полости как суперпозицию стоячих волн. Так же
,
,
, но Планк постулировал что излучение происходит не непрерывно, а определяется порциями – квантами. Энергия каждого кванта принимает значения
,т.е
или энергия гармонического осциллятора принимает дискретные значения. Под гармоническим осциллятором понимают не только частицу совершающую гармоническое колебание, но и стоячую волну.

Для определения
среднего значения энергии учитывают что энергия распределена в зависимости от частоты по закону Больцмана, т.е вероятность того что волна с частотойпринимает значение энергииравна
,
, тогда







.

;
,
.

- Формула Планка.

;
;


. Формула полностью описывает экспериментальную зависимость
и из нее следуют все законы теплового излучения.

Следствия из формулы Планка.

;

1)
Низкие частоты и высокие температуры

;
;
- Релей-Джинс.

2)
Высокие частоты и низкие температуры
;
а это почти что
- Закон Вина. 3)


- закон Стефана-Больцмана.

4)
;
;
;
- это трансцендентное уравнение решая его численными методами получаем корень уравнения
;
- Закон смещения Вина.

Таким образом формула полностью описывает зависимость
и из не следуют се законы теплового излучения.

Применение законов теплового излучения.

Применяется для определения температур раскаленных и самосветящихся тел. Для этого используют пирометры. Пирометрия это метод использующий зависимость энергетической зависимости тел от темпа свечения раскаленных тел и используются для источников света. Для вольфрама доля энергии приходящаяся на видимую часть спектра значительно больше чем для черного тела при той же температуре.